MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  assapropd Structured version   Visualization version   GIF version

Theorem assapropd 19327
Description: If two structures have the same components (properties), one is an associative algebra iff the other one is. (Contributed by Mario Carneiro, 8-Feb-2015.)
Hypotheses
Ref Expression
assapropd.1 (𝜑𝐵 = (Base‘𝐾))
assapropd.2 (𝜑𝐵 = (Base‘𝐿))
assapropd.3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
assapropd.4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
assapropd.5 (𝜑𝐹 = (Scalar‘𝐾))
assapropd.6 (𝜑𝐹 = (Scalar‘𝐿))
assapropd.7 𝑃 = (Base‘𝐹)
assapropd.8 ((𝜑 ∧ (𝑥𝑃𝑦𝐵)) → (𝑥( ·𝑠𝐾)𝑦) = (𝑥( ·𝑠𝐿)𝑦))
Assertion
Ref Expression
assapropd (𝜑 → (𝐾 ∈ AssAlg ↔ 𝐿 ∈ AssAlg))
Distinct variable groups:   𝑥,𝑦,𝐾   𝑥,𝐿,𝑦   𝑥,𝑃,𝑦   𝜑,𝑥,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem assapropd
Dummy variables 𝑤 𝑟 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 assalmod 19319 . . . 4 (𝐾 ∈ AssAlg → 𝐾 ∈ LMod)
2 assaring 19320 . . . 4 (𝐾 ∈ AssAlg → 𝐾 ∈ Ring)
31, 2jca 554 . . 3 (𝐾 ∈ AssAlg → (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring))
43a1i 11 . 2 (𝜑 → (𝐾 ∈ AssAlg → (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)))
5 assalmod 19319 . . . 4 (𝐿 ∈ AssAlg → 𝐿 ∈ LMod)
6 assapropd.1 . . . . 5 (𝜑𝐵 = (Base‘𝐾))
7 assapropd.2 . . . . 5 (𝜑𝐵 = (Base‘𝐿))
8 assapropd.3 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
9 assapropd.5 . . . . 5 (𝜑𝐹 = (Scalar‘𝐾))
10 assapropd.6 . . . . 5 (𝜑𝐹 = (Scalar‘𝐿))
11 assapropd.7 . . . . 5 𝑃 = (Base‘𝐹)
12 assapropd.8 . . . . 5 ((𝜑 ∧ (𝑥𝑃𝑦𝐵)) → (𝑥( ·𝑠𝐾)𝑦) = (𝑥( ·𝑠𝐿)𝑦))
136, 7, 8, 9, 10, 11, 12lmodpropd 18926 . . . 4 (𝜑 → (𝐾 ∈ LMod ↔ 𝐿 ∈ LMod))
145, 13syl5ibr 236 . . 3 (𝜑 → (𝐿 ∈ AssAlg → 𝐾 ∈ LMod))
15 assaring 19320 . . . 4 (𝐿 ∈ AssAlg → 𝐿 ∈ Ring)
16 assapropd.4 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(.r𝐾)𝑦) = (𝑥(.r𝐿)𝑦))
176, 7, 8, 16ringpropd 18582 . . . 4 (𝜑 → (𝐾 ∈ Ring ↔ 𝐿 ∈ Ring))
1815, 17syl5ibr 236 . . 3 (𝜑 → (𝐿 ∈ AssAlg → 𝐾 ∈ Ring))
1914, 18jcad 555 . 2 (𝜑 → (𝐿 ∈ AssAlg → (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)))
209, 10eqtr3d 2658 . . . . . . . 8 (𝜑 → (Scalar‘𝐾) = (Scalar‘𝐿))
2120eleq1d 2686 . . . . . . 7 (𝜑 → ((Scalar‘𝐾) ∈ CRing ↔ (Scalar‘𝐿) ∈ CRing))
2213, 17, 213anbi123d 1399 . . . . . 6 (𝜑 → ((𝐾 ∈ LMod ∧ 𝐾 ∈ Ring ∧ (Scalar‘𝐾) ∈ CRing) ↔ (𝐿 ∈ LMod ∧ 𝐿 ∈ Ring ∧ (Scalar‘𝐿) ∈ CRing)))
2322adantr 481 . . . . 5 ((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) → ((𝐾 ∈ LMod ∧ 𝐾 ∈ Ring ∧ (Scalar‘𝐾) ∈ CRing) ↔ (𝐿 ∈ LMod ∧ 𝐿 ∈ Ring ∧ (Scalar‘𝐿) ∈ CRing)))
24 simpll 790 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟𝑃 ∧ (𝑧𝐵𝑤𝐵))) → 𝜑)
25 simplrl 800 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟𝑃 ∧ (𝑧𝐵𝑤𝐵))) → 𝐾 ∈ LMod)
26 simprl 794 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟𝑃 ∧ (𝑧𝐵𝑤𝐵))) → 𝑟𝑃)
279fveq2d 6195 . . . . . . . . . . . . . . . . . 18 (𝜑 → (Base‘𝐹) = (Base‘(Scalar‘𝐾)))
2811, 27syl5eq 2668 . . . . . . . . . . . . . . . . 17 (𝜑𝑃 = (Base‘(Scalar‘𝐾)))
2924, 28syl 17 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟𝑃 ∧ (𝑧𝐵𝑤𝐵))) → 𝑃 = (Base‘(Scalar‘𝐾)))
3026, 29eleqtrd 2703 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟𝑃 ∧ (𝑧𝐵𝑤𝐵))) → 𝑟 ∈ (Base‘(Scalar‘𝐾)))
31 simprrl 804 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟𝑃 ∧ (𝑧𝐵𝑤𝐵))) → 𝑧𝐵)
3224, 6syl 17 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟𝑃 ∧ (𝑧𝐵𝑤𝐵))) → 𝐵 = (Base‘𝐾))
3331, 32eleqtrd 2703 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟𝑃 ∧ (𝑧𝐵𝑤𝐵))) → 𝑧 ∈ (Base‘𝐾))
34 eqid 2622 . . . . . . . . . . . . . . . 16 (Base‘𝐾) = (Base‘𝐾)
35 eqid 2622 . . . . . . . . . . . . . . . 16 (Scalar‘𝐾) = (Scalar‘𝐾)
36 eqid 2622 . . . . . . . . . . . . . . . 16 ( ·𝑠𝐾) = ( ·𝑠𝐾)
37 eqid 2622 . . . . . . . . . . . . . . . 16 (Base‘(Scalar‘𝐾)) = (Base‘(Scalar‘𝐾))
3834, 35, 36, 37lmodvscl 18880 . . . . . . . . . . . . . . 15 ((𝐾 ∈ LMod ∧ 𝑟 ∈ (Base‘(Scalar‘𝐾)) ∧ 𝑧 ∈ (Base‘𝐾)) → (𝑟( ·𝑠𝐾)𝑧) ∈ (Base‘𝐾))
3925, 30, 33, 38syl3anc 1326 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟𝑃 ∧ (𝑧𝐵𝑤𝐵))) → (𝑟( ·𝑠𝐾)𝑧) ∈ (Base‘𝐾))
4039, 32eleqtrrd 2704 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟𝑃 ∧ (𝑧𝐵𝑤𝐵))) → (𝑟( ·𝑠𝐾)𝑧) ∈ 𝐵)
41 simprrr 805 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟𝑃 ∧ (𝑧𝐵𝑤𝐵))) → 𝑤𝐵)
4216oveqrspc2v 6673 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑟( ·𝑠𝐾)𝑧) ∈ 𝐵𝑤𝐵)) → ((𝑟( ·𝑠𝐾)𝑧)(.r𝐾)𝑤) = ((𝑟( ·𝑠𝐾)𝑧)(.r𝐿)𝑤))
4324, 40, 41, 42syl12anc 1324 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟𝑃 ∧ (𝑧𝐵𝑤𝐵))) → ((𝑟( ·𝑠𝐾)𝑧)(.r𝐾)𝑤) = ((𝑟( ·𝑠𝐾)𝑧)(.r𝐿)𝑤))
4412oveqrspc2v 6673 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑟𝑃𝑧𝐵)) → (𝑟( ·𝑠𝐾)𝑧) = (𝑟( ·𝑠𝐿)𝑧))
4524, 26, 31, 44syl12anc 1324 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟𝑃 ∧ (𝑧𝐵𝑤𝐵))) → (𝑟( ·𝑠𝐾)𝑧) = (𝑟( ·𝑠𝐿)𝑧))
4645oveq1d 6665 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟𝑃 ∧ (𝑧𝐵𝑤𝐵))) → ((𝑟( ·𝑠𝐾)𝑧)(.r𝐿)𝑤) = ((𝑟( ·𝑠𝐿)𝑧)(.r𝐿)𝑤))
4743, 46eqtrd 2656 . . . . . . . . . . 11 (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟𝑃 ∧ (𝑧𝐵𝑤𝐵))) → ((𝑟( ·𝑠𝐾)𝑧)(.r𝐾)𝑤) = ((𝑟( ·𝑠𝐿)𝑧)(.r𝐿)𝑤))
48 simplrr 801 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟𝑃 ∧ (𝑧𝐵𝑤𝐵))) → 𝐾 ∈ Ring)
4941, 32eleqtrd 2703 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟𝑃 ∧ (𝑧𝐵𝑤𝐵))) → 𝑤 ∈ (Base‘𝐾))
50 eqid 2622 . . . . . . . . . . . . . . . 16 (.r𝐾) = (.r𝐾)
5134, 50ringcl 18561 . . . . . . . . . . . . . . 15 ((𝐾 ∈ Ring ∧ 𝑧 ∈ (Base‘𝐾) ∧ 𝑤 ∈ (Base‘𝐾)) → (𝑧(.r𝐾)𝑤) ∈ (Base‘𝐾))
5248, 33, 49, 51syl3anc 1326 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟𝑃 ∧ (𝑧𝐵𝑤𝐵))) → (𝑧(.r𝐾)𝑤) ∈ (Base‘𝐾))
5352, 32eleqtrrd 2704 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟𝑃 ∧ (𝑧𝐵𝑤𝐵))) → (𝑧(.r𝐾)𝑤) ∈ 𝐵)
5412oveqrspc2v 6673 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑟𝑃 ∧ (𝑧(.r𝐾)𝑤) ∈ 𝐵)) → (𝑟( ·𝑠𝐾)(𝑧(.r𝐾)𝑤)) = (𝑟( ·𝑠𝐿)(𝑧(.r𝐾)𝑤)))
5524, 26, 53, 54syl12anc 1324 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟𝑃 ∧ (𝑧𝐵𝑤𝐵))) → (𝑟( ·𝑠𝐾)(𝑧(.r𝐾)𝑤)) = (𝑟( ·𝑠𝐿)(𝑧(.r𝐾)𝑤)))
5616oveqrspc2v 6673 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧𝐵𝑤𝐵)) → (𝑧(.r𝐾)𝑤) = (𝑧(.r𝐿)𝑤))
5724, 31, 41, 56syl12anc 1324 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟𝑃 ∧ (𝑧𝐵𝑤𝐵))) → (𝑧(.r𝐾)𝑤) = (𝑧(.r𝐿)𝑤))
5857oveq2d 6666 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟𝑃 ∧ (𝑧𝐵𝑤𝐵))) → (𝑟( ·𝑠𝐿)(𝑧(.r𝐾)𝑤)) = (𝑟( ·𝑠𝐿)(𝑧(.r𝐿)𝑤)))
5955, 58eqtrd 2656 . . . . . . . . . . 11 (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟𝑃 ∧ (𝑧𝐵𝑤𝐵))) → (𝑟( ·𝑠𝐾)(𝑧(.r𝐾)𝑤)) = (𝑟( ·𝑠𝐿)(𝑧(.r𝐿)𝑤)))
6047, 59eqeq12d 2637 . . . . . . . . . 10 (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟𝑃 ∧ (𝑧𝐵𝑤𝐵))) → (((𝑟( ·𝑠𝐾)𝑧)(.r𝐾)𝑤) = (𝑟( ·𝑠𝐾)(𝑧(.r𝐾)𝑤)) ↔ ((𝑟( ·𝑠𝐿)𝑧)(.r𝐿)𝑤) = (𝑟( ·𝑠𝐿)(𝑧(.r𝐿)𝑤))))
6134, 35, 36, 37lmodvscl 18880 . . . . . . . . . . . . . . 15 ((𝐾 ∈ LMod ∧ 𝑟 ∈ (Base‘(Scalar‘𝐾)) ∧ 𝑤 ∈ (Base‘𝐾)) → (𝑟( ·𝑠𝐾)𝑤) ∈ (Base‘𝐾))
6225, 30, 49, 61syl3anc 1326 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟𝑃 ∧ (𝑧𝐵𝑤𝐵))) → (𝑟( ·𝑠𝐾)𝑤) ∈ (Base‘𝐾))
6362, 32eleqtrrd 2704 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟𝑃 ∧ (𝑧𝐵𝑤𝐵))) → (𝑟( ·𝑠𝐾)𝑤) ∈ 𝐵)
6416oveqrspc2v 6673 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧𝐵 ∧ (𝑟( ·𝑠𝐾)𝑤) ∈ 𝐵)) → (𝑧(.r𝐾)(𝑟( ·𝑠𝐾)𝑤)) = (𝑧(.r𝐿)(𝑟( ·𝑠𝐾)𝑤)))
6524, 31, 63, 64syl12anc 1324 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟𝑃 ∧ (𝑧𝐵𝑤𝐵))) → (𝑧(.r𝐾)(𝑟( ·𝑠𝐾)𝑤)) = (𝑧(.r𝐿)(𝑟( ·𝑠𝐾)𝑤)))
6612oveqrspc2v 6673 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑟𝑃𝑤𝐵)) → (𝑟( ·𝑠𝐾)𝑤) = (𝑟( ·𝑠𝐿)𝑤))
6724, 26, 41, 66syl12anc 1324 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟𝑃 ∧ (𝑧𝐵𝑤𝐵))) → (𝑟( ·𝑠𝐾)𝑤) = (𝑟( ·𝑠𝐿)𝑤))
6867oveq2d 6666 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟𝑃 ∧ (𝑧𝐵𝑤𝐵))) → (𝑧(.r𝐿)(𝑟( ·𝑠𝐾)𝑤)) = (𝑧(.r𝐿)(𝑟( ·𝑠𝐿)𝑤)))
6965, 68eqtrd 2656 . . . . . . . . . . 11 (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟𝑃 ∧ (𝑧𝐵𝑤𝐵))) → (𝑧(.r𝐾)(𝑟( ·𝑠𝐾)𝑤)) = (𝑧(.r𝐿)(𝑟( ·𝑠𝐿)𝑤)))
7069, 59eqeq12d 2637 . . . . . . . . . 10 (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟𝑃 ∧ (𝑧𝐵𝑤𝐵))) → ((𝑧(.r𝐾)(𝑟( ·𝑠𝐾)𝑤)) = (𝑟( ·𝑠𝐾)(𝑧(.r𝐾)𝑤)) ↔ (𝑧(.r𝐿)(𝑟( ·𝑠𝐿)𝑤)) = (𝑟( ·𝑠𝐿)(𝑧(.r𝐿)𝑤))))
7160, 70anbi12d 747 . . . . . . . . 9 (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ (𝑟𝑃 ∧ (𝑧𝐵𝑤𝐵))) → ((((𝑟( ·𝑠𝐾)𝑧)(.r𝐾)𝑤) = (𝑟( ·𝑠𝐾)(𝑧(.r𝐾)𝑤)) ∧ (𝑧(.r𝐾)(𝑟( ·𝑠𝐾)𝑤)) = (𝑟( ·𝑠𝐾)(𝑧(.r𝐾)𝑤))) ↔ (((𝑟( ·𝑠𝐿)𝑧)(.r𝐿)𝑤) = (𝑟( ·𝑠𝐿)(𝑧(.r𝐿)𝑤)) ∧ (𝑧(.r𝐿)(𝑟( ·𝑠𝐿)𝑤)) = (𝑟( ·𝑠𝐿)(𝑧(.r𝐿)𝑤)))))
7271anassrs 680 . . . . . . . 8 ((((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ 𝑟𝑃) ∧ (𝑧𝐵𝑤𝐵)) → ((((𝑟( ·𝑠𝐾)𝑧)(.r𝐾)𝑤) = (𝑟( ·𝑠𝐾)(𝑧(.r𝐾)𝑤)) ∧ (𝑧(.r𝐾)(𝑟( ·𝑠𝐾)𝑤)) = (𝑟( ·𝑠𝐾)(𝑧(.r𝐾)𝑤))) ↔ (((𝑟( ·𝑠𝐿)𝑧)(.r𝐿)𝑤) = (𝑟( ·𝑠𝐿)(𝑧(.r𝐿)𝑤)) ∧ (𝑧(.r𝐿)(𝑟( ·𝑠𝐿)𝑤)) = (𝑟( ·𝑠𝐿)(𝑧(.r𝐿)𝑤)))))
73722ralbidva 2988 . . . . . . 7 (((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) ∧ 𝑟𝑃) → (∀𝑧𝐵𝑤𝐵 (((𝑟( ·𝑠𝐾)𝑧)(.r𝐾)𝑤) = (𝑟( ·𝑠𝐾)(𝑧(.r𝐾)𝑤)) ∧ (𝑧(.r𝐾)(𝑟( ·𝑠𝐾)𝑤)) = (𝑟( ·𝑠𝐾)(𝑧(.r𝐾)𝑤))) ↔ ∀𝑧𝐵𝑤𝐵 (((𝑟( ·𝑠𝐿)𝑧)(.r𝐿)𝑤) = (𝑟( ·𝑠𝐿)(𝑧(.r𝐿)𝑤)) ∧ (𝑧(.r𝐿)(𝑟( ·𝑠𝐿)𝑤)) = (𝑟( ·𝑠𝐿)(𝑧(.r𝐿)𝑤)))))
7473ralbidva 2985 . . . . . 6 ((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) → (∀𝑟𝑃𝑧𝐵𝑤𝐵 (((𝑟( ·𝑠𝐾)𝑧)(.r𝐾)𝑤) = (𝑟( ·𝑠𝐾)(𝑧(.r𝐾)𝑤)) ∧ (𝑧(.r𝐾)(𝑟( ·𝑠𝐾)𝑤)) = (𝑟( ·𝑠𝐾)(𝑧(.r𝐾)𝑤))) ↔ ∀𝑟𝑃𝑧𝐵𝑤𝐵 (((𝑟( ·𝑠𝐿)𝑧)(.r𝐿)𝑤) = (𝑟( ·𝑠𝐿)(𝑧(.r𝐿)𝑤)) ∧ (𝑧(.r𝐿)(𝑟( ·𝑠𝐿)𝑤)) = (𝑟( ·𝑠𝐿)(𝑧(.r𝐿)𝑤)))))
7528adantr 481 . . . . . . 7 ((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) → 𝑃 = (Base‘(Scalar‘𝐾)))
766adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) → 𝐵 = (Base‘𝐾))
7776raleqdv 3144 . . . . . . . 8 ((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) → (∀𝑤𝐵 (((𝑟( ·𝑠𝐾)𝑧)(.r𝐾)𝑤) = (𝑟( ·𝑠𝐾)(𝑧(.r𝐾)𝑤)) ∧ (𝑧(.r𝐾)(𝑟( ·𝑠𝐾)𝑤)) = (𝑟( ·𝑠𝐾)(𝑧(.r𝐾)𝑤))) ↔ ∀𝑤 ∈ (Base‘𝐾)(((𝑟( ·𝑠𝐾)𝑧)(.r𝐾)𝑤) = (𝑟( ·𝑠𝐾)(𝑧(.r𝐾)𝑤)) ∧ (𝑧(.r𝐾)(𝑟( ·𝑠𝐾)𝑤)) = (𝑟( ·𝑠𝐾)(𝑧(.r𝐾)𝑤)))))
7876, 77raleqbidv 3152 . . . . . . 7 ((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) → (∀𝑧𝐵𝑤𝐵 (((𝑟( ·𝑠𝐾)𝑧)(.r𝐾)𝑤) = (𝑟( ·𝑠𝐾)(𝑧(.r𝐾)𝑤)) ∧ (𝑧(.r𝐾)(𝑟( ·𝑠𝐾)𝑤)) = (𝑟( ·𝑠𝐾)(𝑧(.r𝐾)𝑤))) ↔ ∀𝑧 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)(((𝑟( ·𝑠𝐾)𝑧)(.r𝐾)𝑤) = (𝑟( ·𝑠𝐾)(𝑧(.r𝐾)𝑤)) ∧ (𝑧(.r𝐾)(𝑟( ·𝑠𝐾)𝑤)) = (𝑟( ·𝑠𝐾)(𝑧(.r𝐾)𝑤)))))
7975, 78raleqbidv 3152 . . . . . 6 ((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) → (∀𝑟𝑃𝑧𝐵𝑤𝐵 (((𝑟( ·𝑠𝐾)𝑧)(.r𝐾)𝑤) = (𝑟( ·𝑠𝐾)(𝑧(.r𝐾)𝑤)) ∧ (𝑧(.r𝐾)(𝑟( ·𝑠𝐾)𝑤)) = (𝑟( ·𝑠𝐾)(𝑧(.r𝐾)𝑤))) ↔ ∀𝑟 ∈ (Base‘(Scalar‘𝐾))∀𝑧 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)(((𝑟( ·𝑠𝐾)𝑧)(.r𝐾)𝑤) = (𝑟( ·𝑠𝐾)(𝑧(.r𝐾)𝑤)) ∧ (𝑧(.r𝐾)(𝑟( ·𝑠𝐾)𝑤)) = (𝑟( ·𝑠𝐾)(𝑧(.r𝐾)𝑤)))))
8010fveq2d 6195 . . . . . . . . 9 (𝜑 → (Base‘𝐹) = (Base‘(Scalar‘𝐿)))
8111, 80syl5eq 2668 . . . . . . . 8 (𝜑𝑃 = (Base‘(Scalar‘𝐿)))
8281adantr 481 . . . . . . 7 ((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) → 𝑃 = (Base‘(Scalar‘𝐿)))
837adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) → 𝐵 = (Base‘𝐿))
8483raleqdv 3144 . . . . . . . 8 ((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) → (∀𝑤𝐵 (((𝑟( ·𝑠𝐿)𝑧)(.r𝐿)𝑤) = (𝑟( ·𝑠𝐿)(𝑧(.r𝐿)𝑤)) ∧ (𝑧(.r𝐿)(𝑟( ·𝑠𝐿)𝑤)) = (𝑟( ·𝑠𝐿)(𝑧(.r𝐿)𝑤))) ↔ ∀𝑤 ∈ (Base‘𝐿)(((𝑟( ·𝑠𝐿)𝑧)(.r𝐿)𝑤) = (𝑟( ·𝑠𝐿)(𝑧(.r𝐿)𝑤)) ∧ (𝑧(.r𝐿)(𝑟( ·𝑠𝐿)𝑤)) = (𝑟( ·𝑠𝐿)(𝑧(.r𝐿)𝑤)))))
8583, 84raleqbidv 3152 . . . . . . 7 ((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) → (∀𝑧𝐵𝑤𝐵 (((𝑟( ·𝑠𝐿)𝑧)(.r𝐿)𝑤) = (𝑟( ·𝑠𝐿)(𝑧(.r𝐿)𝑤)) ∧ (𝑧(.r𝐿)(𝑟( ·𝑠𝐿)𝑤)) = (𝑟( ·𝑠𝐿)(𝑧(.r𝐿)𝑤))) ↔ ∀𝑧 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)(((𝑟( ·𝑠𝐿)𝑧)(.r𝐿)𝑤) = (𝑟( ·𝑠𝐿)(𝑧(.r𝐿)𝑤)) ∧ (𝑧(.r𝐿)(𝑟( ·𝑠𝐿)𝑤)) = (𝑟( ·𝑠𝐿)(𝑧(.r𝐿)𝑤)))))
8682, 85raleqbidv 3152 . . . . . 6 ((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) → (∀𝑟𝑃𝑧𝐵𝑤𝐵 (((𝑟( ·𝑠𝐿)𝑧)(.r𝐿)𝑤) = (𝑟( ·𝑠𝐿)(𝑧(.r𝐿)𝑤)) ∧ (𝑧(.r𝐿)(𝑟( ·𝑠𝐿)𝑤)) = (𝑟( ·𝑠𝐿)(𝑧(.r𝐿)𝑤))) ↔ ∀𝑟 ∈ (Base‘(Scalar‘𝐿))∀𝑧 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)(((𝑟( ·𝑠𝐿)𝑧)(.r𝐿)𝑤) = (𝑟( ·𝑠𝐿)(𝑧(.r𝐿)𝑤)) ∧ (𝑧(.r𝐿)(𝑟( ·𝑠𝐿)𝑤)) = (𝑟( ·𝑠𝐿)(𝑧(.r𝐿)𝑤)))))
8774, 79, 863bitr3d 298 . . . . 5 ((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) → (∀𝑟 ∈ (Base‘(Scalar‘𝐾))∀𝑧 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)(((𝑟( ·𝑠𝐾)𝑧)(.r𝐾)𝑤) = (𝑟( ·𝑠𝐾)(𝑧(.r𝐾)𝑤)) ∧ (𝑧(.r𝐾)(𝑟( ·𝑠𝐾)𝑤)) = (𝑟( ·𝑠𝐾)(𝑧(.r𝐾)𝑤))) ↔ ∀𝑟 ∈ (Base‘(Scalar‘𝐿))∀𝑧 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)(((𝑟( ·𝑠𝐿)𝑧)(.r𝐿)𝑤) = (𝑟( ·𝑠𝐿)(𝑧(.r𝐿)𝑤)) ∧ (𝑧(.r𝐿)(𝑟( ·𝑠𝐿)𝑤)) = (𝑟( ·𝑠𝐿)(𝑧(.r𝐿)𝑤)))))
8823, 87anbi12d 747 . . . 4 ((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) → (((𝐾 ∈ LMod ∧ 𝐾 ∈ Ring ∧ (Scalar‘𝐾) ∈ CRing) ∧ ∀𝑟 ∈ (Base‘(Scalar‘𝐾))∀𝑧 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)(((𝑟( ·𝑠𝐾)𝑧)(.r𝐾)𝑤) = (𝑟( ·𝑠𝐾)(𝑧(.r𝐾)𝑤)) ∧ (𝑧(.r𝐾)(𝑟( ·𝑠𝐾)𝑤)) = (𝑟( ·𝑠𝐾)(𝑧(.r𝐾)𝑤)))) ↔ ((𝐿 ∈ LMod ∧ 𝐿 ∈ Ring ∧ (Scalar‘𝐿) ∈ CRing) ∧ ∀𝑟 ∈ (Base‘(Scalar‘𝐿))∀𝑧 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)(((𝑟( ·𝑠𝐿)𝑧)(.r𝐿)𝑤) = (𝑟( ·𝑠𝐿)(𝑧(.r𝐿)𝑤)) ∧ (𝑧(.r𝐿)(𝑟( ·𝑠𝐿)𝑤)) = (𝑟( ·𝑠𝐿)(𝑧(.r𝐿)𝑤))))))
8934, 35, 37, 36, 50isassa 19315 . . . 4 (𝐾 ∈ AssAlg ↔ ((𝐾 ∈ LMod ∧ 𝐾 ∈ Ring ∧ (Scalar‘𝐾) ∈ CRing) ∧ ∀𝑟 ∈ (Base‘(Scalar‘𝐾))∀𝑧 ∈ (Base‘𝐾)∀𝑤 ∈ (Base‘𝐾)(((𝑟( ·𝑠𝐾)𝑧)(.r𝐾)𝑤) = (𝑟( ·𝑠𝐾)(𝑧(.r𝐾)𝑤)) ∧ (𝑧(.r𝐾)(𝑟( ·𝑠𝐾)𝑤)) = (𝑟( ·𝑠𝐾)(𝑧(.r𝐾)𝑤)))))
90 eqid 2622 . . . . 5 (Base‘𝐿) = (Base‘𝐿)
91 eqid 2622 . . . . 5 (Scalar‘𝐿) = (Scalar‘𝐿)
92 eqid 2622 . . . . 5 (Base‘(Scalar‘𝐿)) = (Base‘(Scalar‘𝐿))
93 eqid 2622 . . . . 5 ( ·𝑠𝐿) = ( ·𝑠𝐿)
94 eqid 2622 . . . . 5 (.r𝐿) = (.r𝐿)
9590, 91, 92, 93, 94isassa 19315 . . . 4 (𝐿 ∈ AssAlg ↔ ((𝐿 ∈ LMod ∧ 𝐿 ∈ Ring ∧ (Scalar‘𝐿) ∈ CRing) ∧ ∀𝑟 ∈ (Base‘(Scalar‘𝐿))∀𝑧 ∈ (Base‘𝐿)∀𝑤 ∈ (Base‘𝐿)(((𝑟( ·𝑠𝐿)𝑧)(.r𝐿)𝑤) = (𝑟( ·𝑠𝐿)(𝑧(.r𝐿)𝑤)) ∧ (𝑧(.r𝐿)(𝑟( ·𝑠𝐿)𝑤)) = (𝑟( ·𝑠𝐿)(𝑧(.r𝐿)𝑤)))))
9688, 89, 953bitr4g 303 . . 3 ((𝜑 ∧ (𝐾 ∈ LMod ∧ 𝐾 ∈ Ring)) → (𝐾 ∈ AssAlg ↔ 𝐿 ∈ AssAlg))
9796ex 450 . 2 (𝜑 → ((𝐾 ∈ LMod ∧ 𝐾 ∈ Ring) → (𝐾 ∈ AssAlg ↔ 𝐿 ∈ AssAlg)))
984, 19, 97pm5.21ndd 369 1 (𝜑 → (𝐾 ∈ AssAlg ↔ 𝐿 ∈ AssAlg))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  cfv 5888  (class class class)co 6650  Basecbs 15857  +gcplusg 15941  .rcmulr 15942  Scalarcsca 15944   ·𝑠 cvsca 15945  Ringcrg 18547  CRingccrg 18548  LModclmod 18863  AssAlgcasa 19309
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-plusg 15954  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-mgp 18490  df-ur 18502  df-ring 18549  df-lmod 18865  df-assa 19312
This theorem is referenced by:  opsrassa  19489
  Copyright terms: Public domain W3C validator