MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isassad Structured version   Visualization version   GIF version

Theorem isassad 19323
Description: Sufficient condition for being an associative algebra. (Contributed by Mario Carneiro, 5-Dec-2014.)
Hypotheses
Ref Expression
isassad.v (𝜑𝑉 = (Base‘𝑊))
isassad.f (𝜑𝐹 = (Scalar‘𝑊))
isassad.b (𝜑𝐵 = (Base‘𝐹))
isassad.s (𝜑· = ( ·𝑠𝑊))
isassad.t (𝜑× = (.r𝑊))
isassad.1 (𝜑𝑊 ∈ LMod)
isassad.2 (𝜑𝑊 ∈ Ring)
isassad.3 (𝜑𝐹 ∈ CRing)
isassad.4 ((𝜑 ∧ (𝑟𝐵𝑥𝑉𝑦𝑉)) → ((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)))
isassad.5 ((𝜑 ∧ (𝑟𝐵𝑥𝑉𝑦𝑉)) → (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))
Assertion
Ref Expression
isassad (𝜑𝑊 ∈ AssAlg)
Distinct variable groups:   𝑥,𝑟,𝑦,𝐵   𝜑,𝑟,𝑥,𝑦   𝑥,𝑉,𝑦   𝑊,𝑟,𝑥,𝑦
Allowed substitution hints:   · (𝑥,𝑦,𝑟)   × (𝑥,𝑦,𝑟)   𝐹(𝑥,𝑦,𝑟)   𝑉(𝑟)

Proof of Theorem isassad
StepHypRef Expression
1 isassad.1 . . 3 (𝜑𝑊 ∈ LMod)
2 isassad.2 . . 3 (𝜑𝑊 ∈ Ring)
3 isassad.f . . . 4 (𝜑𝐹 = (Scalar‘𝑊))
4 isassad.3 . . . 4 (𝜑𝐹 ∈ CRing)
53, 4eqeltrrd 2702 . . 3 (𝜑 → (Scalar‘𝑊) ∈ CRing)
61, 2, 53jca 1242 . 2 (𝜑 → (𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ∧ (Scalar‘𝑊) ∈ CRing))
7 isassad.4 . . . . 5 ((𝜑 ∧ (𝑟𝐵𝑥𝑉𝑦𝑉)) → ((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)))
8 isassad.5 . . . . 5 ((𝜑 ∧ (𝑟𝐵𝑥𝑉𝑦𝑉)) → (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)))
97, 8jca 554 . . . 4 ((𝜑 ∧ (𝑟𝐵𝑥𝑉𝑦𝑉)) → (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))))
109ralrimivvva 2972 . . 3 (𝜑 → ∀𝑟𝐵𝑥𝑉𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))))
11 isassad.b . . . . 5 (𝜑𝐵 = (Base‘𝐹))
123fveq2d 6195 . . . . 5 (𝜑 → (Base‘𝐹) = (Base‘(Scalar‘𝑊)))
1311, 12eqtrd 2656 . . . 4 (𝜑𝐵 = (Base‘(Scalar‘𝑊)))
14 isassad.v . . . . 5 (𝜑𝑉 = (Base‘𝑊))
15 isassad.t . . . . . . . . 9 (𝜑× = (.r𝑊))
16 isassad.s . . . . . . . . . 10 (𝜑· = ( ·𝑠𝑊))
1716oveqd 6667 . . . . . . . . 9 (𝜑 → (𝑟 · 𝑥) = (𝑟( ·𝑠𝑊)𝑥))
18 eqidd 2623 . . . . . . . . 9 (𝜑𝑦 = 𝑦)
1915, 17, 18oveq123d 6671 . . . . . . . 8 (𝜑 → ((𝑟 · 𝑥) × 𝑦) = ((𝑟( ·𝑠𝑊)𝑥)(.r𝑊)𝑦))
20 eqidd 2623 . . . . . . . . 9 (𝜑𝑟 = 𝑟)
2115oveqd 6667 . . . . . . . . 9 (𝜑 → (𝑥 × 𝑦) = (𝑥(.r𝑊)𝑦))
2216, 20, 21oveq123d 6671 . . . . . . . 8 (𝜑 → (𝑟 · (𝑥 × 𝑦)) = (𝑟( ·𝑠𝑊)(𝑥(.r𝑊)𝑦)))
2319, 22eqeq12d 2637 . . . . . . 7 (𝜑 → (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ↔ ((𝑟( ·𝑠𝑊)𝑥)(.r𝑊)𝑦) = (𝑟( ·𝑠𝑊)(𝑥(.r𝑊)𝑦))))
24 eqidd 2623 . . . . . . . . 9 (𝜑𝑥 = 𝑥)
2516oveqd 6667 . . . . . . . . 9 (𝜑 → (𝑟 · 𝑦) = (𝑟( ·𝑠𝑊)𝑦))
2615, 24, 25oveq123d 6671 . . . . . . . 8 (𝜑 → (𝑥 × (𝑟 · 𝑦)) = (𝑥(.r𝑊)(𝑟( ·𝑠𝑊)𝑦)))
2726, 22eqeq12d 2637 . . . . . . 7 (𝜑 → ((𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦)) ↔ (𝑥(.r𝑊)(𝑟( ·𝑠𝑊)𝑦)) = (𝑟( ·𝑠𝑊)(𝑥(.r𝑊)𝑦))))
2823, 27anbi12d 747 . . . . . 6 (𝜑 → ((((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))) ↔ (((𝑟( ·𝑠𝑊)𝑥)(.r𝑊)𝑦) = (𝑟( ·𝑠𝑊)(𝑥(.r𝑊)𝑦)) ∧ (𝑥(.r𝑊)(𝑟( ·𝑠𝑊)𝑦)) = (𝑟( ·𝑠𝑊)(𝑥(.r𝑊)𝑦)))))
2914, 28raleqbidv 3152 . . . . 5 (𝜑 → (∀𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))) ↔ ∀𝑦 ∈ (Base‘𝑊)(((𝑟( ·𝑠𝑊)𝑥)(.r𝑊)𝑦) = (𝑟( ·𝑠𝑊)(𝑥(.r𝑊)𝑦)) ∧ (𝑥(.r𝑊)(𝑟( ·𝑠𝑊)𝑦)) = (𝑟( ·𝑠𝑊)(𝑥(.r𝑊)𝑦)))))
3014, 29raleqbidv 3152 . . . 4 (𝜑 → (∀𝑥𝑉𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))) ↔ ∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)(((𝑟( ·𝑠𝑊)𝑥)(.r𝑊)𝑦) = (𝑟( ·𝑠𝑊)(𝑥(.r𝑊)𝑦)) ∧ (𝑥(.r𝑊)(𝑟( ·𝑠𝑊)𝑦)) = (𝑟( ·𝑠𝑊)(𝑥(.r𝑊)𝑦)))))
3113, 30raleqbidv 3152 . . 3 (𝜑 → (∀𝑟𝐵𝑥𝑉𝑦𝑉 (((𝑟 · 𝑥) × 𝑦) = (𝑟 · (𝑥 × 𝑦)) ∧ (𝑥 × (𝑟 · 𝑦)) = (𝑟 · (𝑥 × 𝑦))) ↔ ∀𝑟 ∈ (Base‘(Scalar‘𝑊))∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)(((𝑟( ·𝑠𝑊)𝑥)(.r𝑊)𝑦) = (𝑟( ·𝑠𝑊)(𝑥(.r𝑊)𝑦)) ∧ (𝑥(.r𝑊)(𝑟( ·𝑠𝑊)𝑦)) = (𝑟( ·𝑠𝑊)(𝑥(.r𝑊)𝑦)))))
3210, 31mpbid 222 . 2 (𝜑 → ∀𝑟 ∈ (Base‘(Scalar‘𝑊))∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)(((𝑟( ·𝑠𝑊)𝑥)(.r𝑊)𝑦) = (𝑟( ·𝑠𝑊)(𝑥(.r𝑊)𝑦)) ∧ (𝑥(.r𝑊)(𝑟( ·𝑠𝑊)𝑦)) = (𝑟( ·𝑠𝑊)(𝑥(.r𝑊)𝑦))))
33 eqid 2622 . . 3 (Base‘𝑊) = (Base‘𝑊)
34 eqid 2622 . . 3 (Scalar‘𝑊) = (Scalar‘𝑊)
35 eqid 2622 . . 3 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
36 eqid 2622 . . 3 ( ·𝑠𝑊) = ( ·𝑠𝑊)
37 eqid 2622 . . 3 (.r𝑊) = (.r𝑊)
3833, 34, 35, 36, 37isassa 19315 . 2 (𝑊 ∈ AssAlg ↔ ((𝑊 ∈ LMod ∧ 𝑊 ∈ Ring ∧ (Scalar‘𝑊) ∈ CRing) ∧ ∀𝑟 ∈ (Base‘(Scalar‘𝑊))∀𝑥 ∈ (Base‘𝑊)∀𝑦 ∈ (Base‘𝑊)(((𝑟( ·𝑠𝑊)𝑥)(.r𝑊)𝑦) = (𝑟( ·𝑠𝑊)(𝑥(.r𝑊)𝑦)) ∧ (𝑥(.r𝑊)(𝑟( ·𝑠𝑊)𝑦)) = (𝑟( ·𝑠𝑊)(𝑥(.r𝑊)𝑦)))))
396, 32, 38sylanbrc 698 1 (𝜑𝑊 ∈ AssAlg)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  cfv 5888  (class class class)co 6650  Basecbs 15857  .rcmulr 15942  Scalarcsca 15944   ·𝑠 cvsca 15945  Ringcrg 18547  CRingccrg 18548  LModclmod 18863  AssAlgcasa 19309
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-ov 6653  df-assa 19312
This theorem is referenced by:  issubassa  19324  sraassa  19325  psrassa  19414  zlmassa  19872  matassa  20250  mendassa  37764
  Copyright terms: Public domain W3C validator