Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iscrngo2 Structured version   Visualization version   GIF version

Theorem iscrngo2 33796
Description: The predicate "is a commutative ring". (Contributed by Jeff Madsen, 8-Jun-2010.)
Hypotheses
Ref Expression
iscring2.1 𝐺 = (1st𝑅)
iscring2.2 𝐻 = (2nd𝑅)
iscring2.3 𝑋 = ran 𝐺
Assertion
Ref Expression
iscrngo2 (𝑅 ∈ CRingOps ↔ (𝑅 ∈ RingOps ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝐻𝑦) = (𝑦𝐻𝑥)))
Distinct variable groups:   𝑥,𝑅,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐺(𝑥,𝑦)   𝐻(𝑥,𝑦)

Proof of Theorem iscrngo2
StepHypRef Expression
1 iscrngo 33795 . 2 (𝑅 ∈ CRingOps ↔ (𝑅 ∈ RingOps ∧ 𝑅 ∈ Com2))
2 relrngo 33695 . . . . 5 Rel RingOps
3 1st2nd 7214 . . . . 5 ((Rel RingOps ∧ 𝑅 ∈ RingOps) → 𝑅 = ⟨(1st𝑅), (2nd𝑅)⟩)
42, 3mpan 706 . . . 4 (𝑅 ∈ RingOps → 𝑅 = ⟨(1st𝑅), (2nd𝑅)⟩)
5 eleq1 2689 . . . . 5 (𝑅 = ⟨(1st𝑅), (2nd𝑅)⟩ → (𝑅 ∈ Com2 ↔ ⟨(1st𝑅), (2nd𝑅)⟩ ∈ Com2))
6 iscring2.3 . . . . . . . 8 𝑋 = ran 𝐺
7 iscring2.1 . . . . . . . . 9 𝐺 = (1st𝑅)
87rneqi 5352 . . . . . . . 8 ran 𝐺 = ran (1st𝑅)
96, 8eqtri 2644 . . . . . . 7 𝑋 = ran (1st𝑅)
109raleqi 3142 . . . . . 6 (∀𝑥𝑋𝑦 ∈ ran (1st𝑅)(𝑥(2nd𝑅)𝑦) = (𝑦(2nd𝑅)𝑥) ↔ ∀𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)(𝑥(2nd𝑅)𝑦) = (𝑦(2nd𝑅)𝑥))
11 iscring2.2 . . . . . . . . . 10 𝐻 = (2nd𝑅)
1211oveqi 6663 . . . . . . . . 9 (𝑥𝐻𝑦) = (𝑥(2nd𝑅)𝑦)
1311oveqi 6663 . . . . . . . . 9 (𝑦𝐻𝑥) = (𝑦(2nd𝑅)𝑥)
1412, 13eqeq12i 2636 . . . . . . . 8 ((𝑥𝐻𝑦) = (𝑦𝐻𝑥) ↔ (𝑥(2nd𝑅)𝑦) = (𝑦(2nd𝑅)𝑥))
159, 14raleqbii 2990 . . . . . . 7 (∀𝑦𝑋 (𝑥𝐻𝑦) = (𝑦𝐻𝑥) ↔ ∀𝑦 ∈ ran (1st𝑅)(𝑥(2nd𝑅)𝑦) = (𝑦(2nd𝑅)𝑥))
1615ralbii 2980 . . . . . 6 (∀𝑥𝑋𝑦𝑋 (𝑥𝐻𝑦) = (𝑦𝐻𝑥) ↔ ∀𝑥𝑋𝑦 ∈ ran (1st𝑅)(𝑥(2nd𝑅)𝑦) = (𝑦(2nd𝑅)𝑥))
17 fvex 6201 . . . . . . 7 (1st𝑅) ∈ V
18 fvex 6201 . . . . . . 7 (2nd𝑅) ∈ V
19 iscom2 33794 . . . . . . 7 (((1st𝑅) ∈ V ∧ (2nd𝑅) ∈ V) → (⟨(1st𝑅), (2nd𝑅)⟩ ∈ Com2 ↔ ∀𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)(𝑥(2nd𝑅)𝑦) = (𝑦(2nd𝑅)𝑥)))
2017, 18, 19mp2an 708 . . . . . 6 (⟨(1st𝑅), (2nd𝑅)⟩ ∈ Com2 ↔ ∀𝑥 ∈ ran (1st𝑅)∀𝑦 ∈ ran (1st𝑅)(𝑥(2nd𝑅)𝑦) = (𝑦(2nd𝑅)𝑥))
2110, 16, 203bitr4ri 293 . . . . 5 (⟨(1st𝑅), (2nd𝑅)⟩ ∈ Com2 ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝐻𝑦) = (𝑦𝐻𝑥))
225, 21syl6bb 276 . . . 4 (𝑅 = ⟨(1st𝑅), (2nd𝑅)⟩ → (𝑅 ∈ Com2 ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝐻𝑦) = (𝑦𝐻𝑥)))
234, 22syl 17 . . 3 (𝑅 ∈ RingOps → (𝑅 ∈ Com2 ↔ ∀𝑥𝑋𝑦𝑋 (𝑥𝐻𝑦) = (𝑦𝐻𝑥)))
2423pm5.32i 669 . 2 ((𝑅 ∈ RingOps ∧ 𝑅 ∈ Com2) ↔ (𝑅 ∈ RingOps ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝐻𝑦) = (𝑦𝐻𝑥)))
251, 24bitri 264 1 (𝑅 ∈ CRingOps ↔ (𝑅 ∈ RingOps ∧ ∀𝑥𝑋𝑦𝑋 (𝑥𝐻𝑦) = (𝑦𝐻𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  Vcvv 3200  cop 4183  ran crn 5115  Rel wrel 5119  cfv 5888  (class class class)co 6650  1st c1st 7166  2nd c2nd 7167  RingOpscrngo 33693  Com2ccm2 33788  CRingOpsccring 33792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-1st 7168  df-2nd 7169  df-rngo 33694  df-com2 33789  df-crngo 33793
This theorem is referenced by:  crngocom  33800  crngohomfo  33805
  Copyright terms: Public domain W3C validator