Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iscrngo2 Structured version   Visualization version   Unicode version

Theorem iscrngo2 33796
Description: The predicate "is a commutative ring". (Contributed by Jeff Madsen, 8-Jun-2010.)
Hypotheses
Ref Expression
iscring2.1  |-  G  =  ( 1st `  R
)
iscring2.2  |-  H  =  ( 2nd `  R
)
iscring2.3  |-  X  =  ran  G
Assertion
Ref Expression
iscrngo2  |-  ( R  e. CRingOps 
<->  ( R  e.  RingOps  /\  A. x  e.  X  A. y  e.  X  (
x H y )  =  ( y H x ) ) )
Distinct variable groups:    x, R, y    x, X, y
Allowed substitution hints:    G( x, y)    H( x, y)

Proof of Theorem iscrngo2
StepHypRef Expression
1 iscrngo 33795 . 2  |-  ( R  e. CRingOps 
<->  ( R  e.  RingOps  /\  R  e.  Com2 ) )
2 relrngo 33695 . . . . 5  |-  Rel  RingOps
3 1st2nd 7214 . . . . 5  |-  ( ( Rel  RingOps  /\  R  e.  RingOps )  ->  R  =  <. ( 1st `  R ) ,  ( 2nd `  R
) >. )
42, 3mpan 706 . . . 4  |-  ( R  e.  RingOps  ->  R  =  <. ( 1st `  R ) ,  ( 2nd `  R
) >. )
5 eleq1 2689 . . . . 5  |-  ( R  =  <. ( 1st `  R
) ,  ( 2nd `  R ) >.  ->  ( R  e.  Com2  <->  <. ( 1st `  R ) ,  ( 2nd `  R )
>.  e.  Com2 ) )
6 iscring2.3 . . . . . . . 8  |-  X  =  ran  G
7 iscring2.1 . . . . . . . . 9  |-  G  =  ( 1st `  R
)
87rneqi 5352 . . . . . . . 8  |-  ran  G  =  ran  ( 1st `  R
)
96, 8eqtri 2644 . . . . . . 7  |-  X  =  ran  ( 1st `  R
)
109raleqi 3142 . . . . . 6  |-  ( A. x  e.  X  A. y  e.  ran  ( 1st `  R ) ( x ( 2nd `  R
) y )  =  ( y ( 2nd `  R ) x )  <->  A. x  e.  ran  ( 1st `  R ) A. y  e.  ran  ( 1st `  R ) ( x ( 2nd `  R ) y )  =  ( y ( 2nd `  R ) x ) )
11 iscring2.2 . . . . . . . . . 10  |-  H  =  ( 2nd `  R
)
1211oveqi 6663 . . . . . . . . 9  |-  ( x H y )  =  ( x ( 2nd `  R ) y )
1311oveqi 6663 . . . . . . . . 9  |-  ( y H x )  =  ( y ( 2nd `  R ) x )
1412, 13eqeq12i 2636 . . . . . . . 8  |-  ( ( x H y )  =  ( y H x )  <->  ( x
( 2nd `  R
) y )  =  ( y ( 2nd `  R ) x ) )
159, 14raleqbii 2990 . . . . . . 7  |-  ( A. y  e.  X  (
x H y )  =  ( y H x )  <->  A. y  e.  ran  ( 1st `  R
) ( x ( 2nd `  R ) y )  =  ( y ( 2nd `  R
) x ) )
1615ralbii 2980 . . . . . 6  |-  ( A. x  e.  X  A. y  e.  X  (
x H y )  =  ( y H x )  <->  A. x  e.  X  A. y  e.  ran  ( 1st `  R
) ( x ( 2nd `  R ) y )  =  ( y ( 2nd `  R
) x ) )
17 fvex 6201 . . . . . . 7  |-  ( 1st `  R )  e.  _V
18 fvex 6201 . . . . . . 7  |-  ( 2nd `  R )  e.  _V
19 iscom2 33794 . . . . . . 7  |-  ( ( ( 1st `  R
)  e.  _V  /\  ( 2nd `  R )  e.  _V )  -> 
( <. ( 1st `  R
) ,  ( 2nd `  R ) >.  e.  Com2  <->  A. x  e.  ran  ( 1st `  R ) A. y  e.  ran  ( 1st `  R
) ( x ( 2nd `  R ) y )  =  ( y ( 2nd `  R
) x ) ) )
2017, 18, 19mp2an 708 . . . . . 6  |-  ( <.
( 1st `  R
) ,  ( 2nd `  R ) >.  e.  Com2  <->  A. x  e.  ran  ( 1st `  R ) A. y  e.  ran  ( 1st `  R
) ( x ( 2nd `  R ) y )  =  ( y ( 2nd `  R
) x ) )
2110, 16, 203bitr4ri 293 . . . . 5  |-  ( <.
( 1st `  R
) ,  ( 2nd `  R ) >.  e.  Com2  <->  A. x  e.  X  A. y  e.  X  (
x H y )  =  ( y H x ) )
225, 21syl6bb 276 . . . 4  |-  ( R  =  <. ( 1st `  R
) ,  ( 2nd `  R ) >.  ->  ( R  e.  Com2  <->  A. x  e.  X  A. y  e.  X  ( x H y )  =  ( y H x ) ) )
234, 22syl 17 . . 3  |-  ( R  e.  RingOps  ->  ( R  e. 
Com2 
<-> 
A. x  e.  X  A. y  e.  X  ( x H y )  =  ( y H x ) ) )
2423pm5.32i 669 . 2  |-  ( ( R  e.  RingOps  /\  R  e.  Com2 )  <->  ( R  e.  RingOps  /\  A. x  e.  X  A. y  e.  X  ( x H y )  =  ( y H x ) ) )
251, 24bitri 264 1  |-  ( R  e. CRingOps 
<->  ( R  e.  RingOps  /\  A. x  e.  X  A. y  e.  X  (
x H y )  =  ( y H x ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200   <.cop 4183   ran crn 5115   Rel wrel 5119   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167   RingOpscrngo 33693   Com2ccm2 33788  CRingOpsccring 33792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-1st 7168  df-2nd 7169  df-rngo 33694  df-com2 33789  df-crngo 33793
This theorem is referenced by:  crngocom  33800  crngohomfo  33805
  Copyright terms: Public domain W3C validator