MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isf32lem3 Structured version   Visualization version   GIF version

Theorem isf32lem3 9177
Description: Lemma for isfin3-2 9189. Being a chain, difference sets are disjoint (one case). (Contributed by Stefan O'Rear, 5-Nov-2014.)
Hypotheses
Ref Expression
isf32lem.a (𝜑𝐹:ω⟶𝒫 𝐺)
isf32lem.b (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹𝑥))
isf32lem.c (𝜑 → ¬ ran 𝐹 ∈ ran 𝐹)
Assertion
Ref Expression
isf32lem3 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵𝐴𝜑)) → (((𝐹𝐴) ∖ (𝐹‘suc 𝐴)) ∩ ((𝐹𝐵) ∖ (𝐹‘suc 𝐵))) = ∅)
Distinct variable groups:   𝑥,𝐵   𝜑,𝑥   𝑥,𝐴   𝑥,𝐹
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem isf32lem3
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 eldifi 3732 . . . 4 (𝑎 ∈ ((𝐹𝐴) ∖ (𝐹‘suc 𝐴)) → 𝑎 ∈ (𝐹𝐴))
2 simpll 790 . . . . . 6 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵𝐴𝜑)) → 𝐴 ∈ ω)
3 peano2 7086 . . . . . . 7 (𝐵 ∈ ω → suc 𝐵 ∈ ω)
43ad2antlr 763 . . . . . 6 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵𝐴𝜑)) → suc 𝐵 ∈ ω)
5 nnord 7073 . . . . . . . 8 (𝐴 ∈ ω → Ord 𝐴)
65ad2antrr 762 . . . . . . 7 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵𝐴𝜑)) → Ord 𝐴)
7 simprl 794 . . . . . . 7 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵𝐴𝜑)) → 𝐵𝐴)
8 ordsucss 7018 . . . . . . 7 (Ord 𝐴 → (𝐵𝐴 → suc 𝐵𝐴))
96, 7, 8sylc 65 . . . . . 6 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵𝐴𝜑)) → suc 𝐵𝐴)
10 simprr 796 . . . . . 6 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵𝐴𝜑)) → 𝜑)
11 isf32lem.a . . . . . . 7 (𝜑𝐹:ω⟶𝒫 𝐺)
12 isf32lem.b . . . . . . 7 (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹𝑥))
13 isf32lem.c . . . . . . 7 (𝜑 → ¬ ran 𝐹 ∈ ran 𝐹)
1411, 12, 13isf32lem1 9175 . . . . . 6 (((𝐴 ∈ ω ∧ suc 𝐵 ∈ ω) ∧ (suc 𝐵𝐴𝜑)) → (𝐹𝐴) ⊆ (𝐹‘suc 𝐵))
152, 4, 9, 10, 14syl22anc 1327 . . . . 5 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵𝐴𝜑)) → (𝐹𝐴) ⊆ (𝐹‘suc 𝐵))
1615sseld 3602 . . . 4 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵𝐴𝜑)) → (𝑎 ∈ (𝐹𝐴) → 𝑎 ∈ (𝐹‘suc 𝐵)))
17 elndif 3734 . . . 4 (𝑎 ∈ (𝐹‘suc 𝐵) → ¬ 𝑎 ∈ ((𝐹𝐵) ∖ (𝐹‘suc 𝐵)))
181, 16, 17syl56 36 . . 3 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵𝐴𝜑)) → (𝑎 ∈ ((𝐹𝐴) ∖ (𝐹‘suc 𝐴)) → ¬ 𝑎 ∈ ((𝐹𝐵) ∖ (𝐹‘suc 𝐵))))
1918ralrimiv 2965 . 2 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵𝐴𝜑)) → ∀𝑎 ∈ ((𝐹𝐴) ∖ (𝐹‘suc 𝐴)) ¬ 𝑎 ∈ ((𝐹𝐵) ∖ (𝐹‘suc 𝐵)))
20 disj 4017 . 2 ((((𝐹𝐴) ∖ (𝐹‘suc 𝐴)) ∩ ((𝐹𝐵) ∖ (𝐹‘suc 𝐵))) = ∅ ↔ ∀𝑎 ∈ ((𝐹𝐴) ∖ (𝐹‘suc 𝐴)) ¬ 𝑎 ∈ ((𝐹𝐵) ∖ (𝐹‘suc 𝐵)))
2119, 20sylibr 224 1 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ (𝐵𝐴𝜑)) → (((𝐹𝐴) ∖ (𝐹‘suc 𝐴)) ∩ ((𝐹𝐵) ∖ (𝐹‘suc 𝐵))) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1483  wcel 1990  wral 2912  cdif 3571  cin 3573  wss 3574  c0 3915  𝒫 cpw 4158   cint 4475  ran crn 5115  Ord word 5722  suc csuc 5725  wf 5884  cfv 5888  ωcom 7065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fv 5896  df-om 7066
This theorem is referenced by:  isf32lem4  9178
  Copyright terms: Public domain W3C validator