MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isf34lem3 Structured version   Visualization version   GIF version

Theorem isf34lem3 9197
Description: Lemma for isfin3-4 9204. (Contributed by Stefan O'Rear, 7-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.)
Hypothesis
Ref Expression
compss.a 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴𝑥))
Assertion
Ref Expression
isf34lem3 ((𝐴𝑉𝑋 ⊆ 𝒫 𝐴) → (𝐹 “ (𝐹𝑋)) = 𝑋)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑉
Allowed substitution hints:   𝐹(𝑥)   𝑋(𝑥)

Proof of Theorem isf34lem3
StepHypRef Expression
1 compss.a . . . 4 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴𝑥))
21compsscnv 9193 . . 3 𝐹 = 𝐹
32imaeq1i 5463 . 2 (𝐹 “ (𝐹𝑋)) = (𝐹 “ (𝐹𝑋))
41compssiso 9196 . . . 4 (𝐴𝑉𝐹 Isom [] , [] (𝒫 𝐴, 𝒫 𝐴))
5 isof1o 6573 . . . 4 (𝐹 Isom [] , [] (𝒫 𝐴, 𝒫 𝐴) → 𝐹:𝒫 𝐴1-1-onto→𝒫 𝐴)
6 f1of1 6136 . . . 4 (𝐹:𝒫 𝐴1-1-onto→𝒫 𝐴𝐹:𝒫 𝐴1-1→𝒫 𝐴)
74, 5, 63syl 18 . . 3 (𝐴𝑉𝐹:𝒫 𝐴1-1→𝒫 𝐴)
8 f1imacnv 6153 . . 3 ((𝐹:𝒫 𝐴1-1→𝒫 𝐴𝑋 ⊆ 𝒫 𝐴) → (𝐹 “ (𝐹𝑋)) = 𝑋)
97, 8sylan 488 . 2 ((𝐴𝑉𝑋 ⊆ 𝒫 𝐴) → (𝐹 “ (𝐹𝑋)) = 𝑋)
103, 9syl5eqr 2670 1 ((𝐴𝑉𝑋 ⊆ 𝒫 𝐴) → (𝐹 “ (𝐹𝑋)) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  cdif 3571  wss 3574  𝒫 cpw 4158  cmpt 4729  ccnv 5113  cima 5117  1-1wf1 5885  1-1-ontowf1o 5887   Isom wiso 5889   [] crpss 6936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-rpss 6937
This theorem is referenced by:  isf34lem5  9200  isf34lem7  9201  isf34lem6  9202
  Copyright terms: Public domain W3C validator