![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isof1o | Structured version Visualization version GIF version |
Description: An isomorphism is a one-to-one onto function. (Contributed by NM, 27-Apr-2004.) |
Ref | Expression |
---|---|
isof1o | ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴–1-1-onto→𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-isom 5897 | . 2 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ (𝐻:𝐴–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 ↔ (𝐻‘𝑥)𝑆(𝐻‘𝑦)))) | |
2 | 1 | simplbi 476 | 1 ⊢ (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴–1-1-onto→𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∀wral 2912 class class class wbr 4653 –1-1-onto→wf1o 5887 ‘cfv 5888 Isom wiso 5889 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 386 df-isom 5897 |
This theorem is referenced by: isores1 6584 isomin 6587 isoini 6588 isoini2 6589 isofrlem 6590 isoselem 6591 isofr 6592 isose 6593 isofr2 6594 isopolem 6595 isosolem 6597 weniso 6604 weisoeq 6605 weisoeq2 6606 wemoiso 7153 wemoiso2 7154 smoiso 7459 smoiso2 7466 supisolem 8379 supisoex 8380 supiso 8381 ordiso2 8420 ordtypelem10 8432 oiexg 8440 oien 8443 oismo 8445 cantnfle 8568 cantnflt2 8570 cantnfp1lem3 8577 cantnflem1b 8583 cantnflem1d 8585 cantnflem1 8586 cantnffval2 8592 cantnff1o 8593 wemapwe 8594 cnfcom3lem 8600 infxpenlem 8836 iunfictbso 8937 dfac12lem2 8966 cofsmo 9091 isf34lem3 9197 isf34lem5 9200 hsmexlem1 9248 fpwwe2lem6 9457 fpwwe2lem7 9458 fpwwe2lem9 9460 pwfseqlem5 9485 fz1isolem 13245 seqcoll 13248 seqcoll2 13249 isercolllem2 14396 isercoll 14398 summolem2a 14446 prodmolem2a 14664 gsumval3lem1 18306 gsumval3 18308 ordthmeolem 21604 dvne0f1 23775 dvcvx 23783 isoun 29479 erdsze2lem1 31185 fourierdlem20 40344 fourierdlem50 40373 fourierdlem51 40374 fourierdlem52 40375 fourierdlem63 40386 fourierdlem64 40387 fourierdlem65 40388 fourierdlem76 40399 fourierdlem102 40425 fourierdlem114 40437 |
Copyright terms: Public domain | W3C validator |