| Step | Hyp | Ref
| Expression |
| 1 | | elmapi 7879 |
. . . 4
⊢ (𝑓 ∈ (𝒫 𝐴 ↑𝑚
ω) → 𝑓:ω⟶𝒫 𝐴) |
| 2 | | compss.a |
. . . . . 6
⊢ 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴 ∖ 𝑥)) |
| 3 | 2 | isf34lem7 9201 |
. . . . 5
⊢ ((𝐴 ∈ FinIII ∧
𝑓:ω⟶𝒫
𝐴 ∧ ∀𝑦 ∈ ω (𝑓‘𝑦) ⊆ (𝑓‘suc 𝑦)) → ∪ ran
𝑓 ∈ ran 𝑓) |
| 4 | 3 | 3expia 1267 |
. . . 4
⊢ ((𝐴 ∈ FinIII ∧
𝑓:ω⟶𝒫
𝐴) → (∀𝑦 ∈ ω (𝑓‘𝑦) ⊆ (𝑓‘suc 𝑦) → ∪ ran
𝑓 ∈ ran 𝑓)) |
| 5 | 1, 4 | sylan2 491 |
. . 3
⊢ ((𝐴 ∈ FinIII ∧
𝑓 ∈ (𝒫 𝐴 ↑𝑚
ω)) → (∀𝑦
∈ ω (𝑓‘𝑦) ⊆ (𝑓‘suc 𝑦) → ∪ ran
𝑓 ∈ ran 𝑓)) |
| 6 | 5 | ralrimiva 2966 |
. 2
⊢ (𝐴 ∈ FinIII →
∀𝑓 ∈ (𝒫
𝐴
↑𝑚 ω)(∀𝑦 ∈ ω (𝑓‘𝑦) ⊆ (𝑓‘suc 𝑦) → ∪ ran
𝑓 ∈ ran 𝑓)) |
| 7 | | elmapex 7878 |
. . . . . . . . . . 11
⊢ (𝑔 ∈ (𝒫 𝐴 ↑𝑚
ω) → (𝒫 𝐴 ∈ V ∧ ω ∈
V)) |
| 8 | 7 | simpld 475 |
. . . . . . . . . 10
⊢ (𝑔 ∈ (𝒫 𝐴 ↑𝑚
ω) → 𝒫 𝐴
∈ V) |
| 9 | | pwexb 6975 |
. . . . . . . . . 10
⊢ (𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V) |
| 10 | 8, 9 | sylibr 224 |
. . . . . . . . 9
⊢ (𝑔 ∈ (𝒫 𝐴 ↑𝑚
ω) → 𝐴 ∈
V) |
| 11 | 2 | isf34lem2 9195 |
. . . . . . . . 9
⊢ (𝐴 ∈ V → 𝐹:𝒫 𝐴⟶𝒫 𝐴) |
| 12 | 10, 11 | syl 17 |
. . . . . . . 8
⊢ (𝑔 ∈ (𝒫 𝐴 ↑𝑚
ω) → 𝐹:𝒫
𝐴⟶𝒫 𝐴) |
| 13 | | elmapi 7879 |
. . . . . . . 8
⊢ (𝑔 ∈ (𝒫 𝐴 ↑𝑚
ω) → 𝑔:ω⟶𝒫 𝐴) |
| 14 | | fco 6058 |
. . . . . . . 8
⊢ ((𝐹:𝒫 𝐴⟶𝒫 𝐴 ∧ 𝑔:ω⟶𝒫 𝐴) → (𝐹 ∘ 𝑔):ω⟶𝒫 𝐴) |
| 15 | 12, 13, 14 | syl2anc 693 |
. . . . . . 7
⊢ (𝑔 ∈ (𝒫 𝐴 ↑𝑚
ω) → (𝐹 ∘
𝑔):ω⟶𝒫
𝐴) |
| 16 | | elmapg 7870 |
. . . . . . . 8
⊢
((𝒫 𝐴 ∈
V ∧ ω ∈ V) → ((𝐹 ∘ 𝑔) ∈ (𝒫 𝐴 ↑𝑚 ω) ↔
(𝐹 ∘ 𝑔):ω⟶𝒫 𝐴)) |
| 17 | 7, 16 | syl 17 |
. . . . . . 7
⊢ (𝑔 ∈ (𝒫 𝐴 ↑𝑚
ω) → ((𝐹 ∘
𝑔) ∈ (𝒫 𝐴 ↑𝑚
ω) ↔ (𝐹 ∘
𝑔):ω⟶𝒫
𝐴)) |
| 18 | 15, 17 | mpbird 247 |
. . . . . 6
⊢ (𝑔 ∈ (𝒫 𝐴 ↑𝑚
ω) → (𝐹 ∘
𝑔) ∈ (𝒫 𝐴 ↑𝑚
ω)) |
| 19 | | fveq1 6190 |
. . . . . . . . . 10
⊢ (𝑓 = (𝐹 ∘ 𝑔) → (𝑓‘𝑦) = ((𝐹 ∘ 𝑔)‘𝑦)) |
| 20 | | fveq1 6190 |
. . . . . . . . . 10
⊢ (𝑓 = (𝐹 ∘ 𝑔) → (𝑓‘suc 𝑦) = ((𝐹 ∘ 𝑔)‘suc 𝑦)) |
| 21 | 19, 20 | sseq12d 3634 |
. . . . . . . . 9
⊢ (𝑓 = (𝐹 ∘ 𝑔) → ((𝑓‘𝑦) ⊆ (𝑓‘suc 𝑦) ↔ ((𝐹 ∘ 𝑔)‘𝑦) ⊆ ((𝐹 ∘ 𝑔)‘suc 𝑦))) |
| 22 | 21 | ralbidv 2986 |
. . . . . . . 8
⊢ (𝑓 = (𝐹 ∘ 𝑔) → (∀𝑦 ∈ ω (𝑓‘𝑦) ⊆ (𝑓‘suc 𝑦) ↔ ∀𝑦 ∈ ω ((𝐹 ∘ 𝑔)‘𝑦) ⊆ ((𝐹 ∘ 𝑔)‘suc 𝑦))) |
| 23 | | rneq 5351 |
. . . . . . . . . . 11
⊢ (𝑓 = (𝐹 ∘ 𝑔) → ran 𝑓 = ran (𝐹 ∘ 𝑔)) |
| 24 | | rnco2 5642 |
. . . . . . . . . . 11
⊢ ran
(𝐹 ∘ 𝑔) = (𝐹 “ ran 𝑔) |
| 25 | 23, 24 | syl6eq 2672 |
. . . . . . . . . 10
⊢ (𝑓 = (𝐹 ∘ 𝑔) → ran 𝑓 = (𝐹 “ ran 𝑔)) |
| 26 | 25 | unieqd 4446 |
. . . . . . . . 9
⊢ (𝑓 = (𝐹 ∘ 𝑔) → ∪ ran
𝑓 = ∪ (𝐹
“ ran 𝑔)) |
| 27 | 26, 25 | eleq12d 2695 |
. . . . . . . 8
⊢ (𝑓 = (𝐹 ∘ 𝑔) → (∪ ran
𝑓 ∈ ran 𝑓 ↔ ∪ (𝐹
“ ran 𝑔) ∈
(𝐹 “ ran 𝑔))) |
| 28 | 22, 27 | imbi12d 334 |
. . . . . . 7
⊢ (𝑓 = (𝐹 ∘ 𝑔) → ((∀𝑦 ∈ ω (𝑓‘𝑦) ⊆ (𝑓‘suc 𝑦) → ∪ ran
𝑓 ∈ ran 𝑓) ↔ (∀𝑦 ∈ ω ((𝐹 ∘ 𝑔)‘𝑦) ⊆ ((𝐹 ∘ 𝑔)‘suc 𝑦) → ∪ (𝐹 “ ran 𝑔) ∈ (𝐹 “ ran 𝑔)))) |
| 29 | 28 | rspccv 3306 |
. . . . . 6
⊢
(∀𝑓 ∈
(𝒫 𝐴
↑𝑚 ω)(∀𝑦 ∈ ω (𝑓‘𝑦) ⊆ (𝑓‘suc 𝑦) → ∪ ran
𝑓 ∈ ran 𝑓) → ((𝐹 ∘ 𝑔) ∈ (𝒫 𝐴 ↑𝑚 ω) →
(∀𝑦 ∈ ω
((𝐹 ∘ 𝑔)‘𝑦) ⊆ ((𝐹 ∘ 𝑔)‘suc 𝑦) → ∪ (𝐹 “ ran 𝑔) ∈ (𝐹 “ ran 𝑔)))) |
| 30 | 18, 29 | syl5 34 |
. . . . 5
⊢
(∀𝑓 ∈
(𝒫 𝐴
↑𝑚 ω)(∀𝑦 ∈ ω (𝑓‘𝑦) ⊆ (𝑓‘suc 𝑦) → ∪ ran
𝑓 ∈ ran 𝑓) → (𝑔 ∈ (𝒫 𝐴 ↑𝑚 ω) →
(∀𝑦 ∈ ω
((𝐹 ∘ 𝑔)‘𝑦) ⊆ ((𝐹 ∘ 𝑔)‘suc 𝑦) → ∪ (𝐹 “ ran 𝑔) ∈ (𝐹 “ ran 𝑔)))) |
| 31 | | sscon 3744 |
. . . . . . . . 9
⊢ ((𝑔‘suc 𝑦) ⊆ (𝑔‘𝑦) → (𝐴 ∖ (𝑔‘𝑦)) ⊆ (𝐴 ∖ (𝑔‘suc 𝑦))) |
| 32 | 10 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝑔 ∈ (𝒫 𝐴 ↑𝑚
ω) ∧ 𝑦 ∈
ω) → 𝐴 ∈
V) |
| 33 | 13 | ffvelrnda 6359 |
. . . . . . . . . . . 12
⊢ ((𝑔 ∈ (𝒫 𝐴 ↑𝑚
ω) ∧ 𝑦 ∈
ω) → (𝑔‘𝑦) ∈ 𝒫 𝐴) |
| 34 | 33 | elpwid 4170 |
. . . . . . . . . . 11
⊢ ((𝑔 ∈ (𝒫 𝐴 ↑𝑚
ω) ∧ 𝑦 ∈
ω) → (𝑔‘𝑦) ⊆ 𝐴) |
| 35 | 2 | isf34lem1 9194 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ V ∧ (𝑔‘𝑦) ⊆ 𝐴) → (𝐹‘(𝑔‘𝑦)) = (𝐴 ∖ (𝑔‘𝑦))) |
| 36 | 32, 34, 35 | syl2anc 693 |
. . . . . . . . . 10
⊢ ((𝑔 ∈ (𝒫 𝐴 ↑𝑚
ω) ∧ 𝑦 ∈
ω) → (𝐹‘(𝑔‘𝑦)) = (𝐴 ∖ (𝑔‘𝑦))) |
| 37 | | peano2 7086 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ω → suc 𝑦 ∈
ω) |
| 38 | | ffvelrn 6357 |
. . . . . . . . . . . . 13
⊢ ((𝑔:ω⟶𝒫 𝐴 ∧ suc 𝑦 ∈ ω) → (𝑔‘suc 𝑦) ∈ 𝒫 𝐴) |
| 39 | 13, 37, 38 | syl2an 494 |
. . . . . . . . . . . 12
⊢ ((𝑔 ∈ (𝒫 𝐴 ↑𝑚
ω) ∧ 𝑦 ∈
ω) → (𝑔‘suc 𝑦) ∈ 𝒫 𝐴) |
| 40 | 39 | elpwid 4170 |
. . . . . . . . . . 11
⊢ ((𝑔 ∈ (𝒫 𝐴 ↑𝑚
ω) ∧ 𝑦 ∈
ω) → (𝑔‘suc 𝑦) ⊆ 𝐴) |
| 41 | 2 | isf34lem1 9194 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ V ∧ (𝑔‘suc 𝑦) ⊆ 𝐴) → (𝐹‘(𝑔‘suc 𝑦)) = (𝐴 ∖ (𝑔‘suc 𝑦))) |
| 42 | 32, 40, 41 | syl2anc 693 |
. . . . . . . . . 10
⊢ ((𝑔 ∈ (𝒫 𝐴 ↑𝑚
ω) ∧ 𝑦 ∈
ω) → (𝐹‘(𝑔‘suc 𝑦)) = (𝐴 ∖ (𝑔‘suc 𝑦))) |
| 43 | 36, 42 | sseq12d 3634 |
. . . . . . . . 9
⊢ ((𝑔 ∈ (𝒫 𝐴 ↑𝑚
ω) ∧ 𝑦 ∈
ω) → ((𝐹‘(𝑔‘𝑦)) ⊆ (𝐹‘(𝑔‘suc 𝑦)) ↔ (𝐴 ∖ (𝑔‘𝑦)) ⊆ (𝐴 ∖ (𝑔‘suc 𝑦)))) |
| 44 | 31, 43 | syl5ibr 236 |
. . . . . . . 8
⊢ ((𝑔 ∈ (𝒫 𝐴 ↑𝑚
ω) ∧ 𝑦 ∈
ω) → ((𝑔‘suc 𝑦) ⊆ (𝑔‘𝑦) → (𝐹‘(𝑔‘𝑦)) ⊆ (𝐹‘(𝑔‘suc 𝑦)))) |
| 45 | | fvco3 6275 |
. . . . . . . . . 10
⊢ ((𝑔:ω⟶𝒫 𝐴 ∧ 𝑦 ∈ ω) → ((𝐹 ∘ 𝑔)‘𝑦) = (𝐹‘(𝑔‘𝑦))) |
| 46 | 13, 45 | sylan 488 |
. . . . . . . . 9
⊢ ((𝑔 ∈ (𝒫 𝐴 ↑𝑚
ω) ∧ 𝑦 ∈
ω) → ((𝐹 ∘
𝑔)‘𝑦) = (𝐹‘(𝑔‘𝑦))) |
| 47 | | fvco3 6275 |
. . . . . . . . . 10
⊢ ((𝑔:ω⟶𝒫 𝐴 ∧ suc 𝑦 ∈ ω) → ((𝐹 ∘ 𝑔)‘suc 𝑦) = (𝐹‘(𝑔‘suc 𝑦))) |
| 48 | 13, 37, 47 | syl2an 494 |
. . . . . . . . 9
⊢ ((𝑔 ∈ (𝒫 𝐴 ↑𝑚
ω) ∧ 𝑦 ∈
ω) → ((𝐹 ∘
𝑔)‘suc 𝑦) = (𝐹‘(𝑔‘suc 𝑦))) |
| 49 | 46, 48 | sseq12d 3634 |
. . . . . . . 8
⊢ ((𝑔 ∈ (𝒫 𝐴 ↑𝑚
ω) ∧ 𝑦 ∈
ω) → (((𝐹
∘ 𝑔)‘𝑦) ⊆ ((𝐹 ∘ 𝑔)‘suc 𝑦) ↔ (𝐹‘(𝑔‘𝑦)) ⊆ (𝐹‘(𝑔‘suc 𝑦)))) |
| 50 | 44, 49 | sylibrd 249 |
. . . . . . 7
⊢ ((𝑔 ∈ (𝒫 𝐴 ↑𝑚
ω) ∧ 𝑦 ∈
ω) → ((𝑔‘suc 𝑦) ⊆ (𝑔‘𝑦) → ((𝐹 ∘ 𝑔)‘𝑦) ⊆ ((𝐹 ∘ 𝑔)‘suc 𝑦))) |
| 51 | 50 | ralimdva 2962 |
. . . . . 6
⊢ (𝑔 ∈ (𝒫 𝐴 ↑𝑚
ω) → (∀𝑦
∈ ω (𝑔‘suc
𝑦) ⊆ (𝑔‘𝑦) → ∀𝑦 ∈ ω ((𝐹 ∘ 𝑔)‘𝑦) ⊆ ((𝐹 ∘ 𝑔)‘suc 𝑦))) |
| 52 | | ffn 6045 |
. . . . . . . . 9
⊢ (𝐹:𝒫 𝐴⟶𝒫 𝐴 → 𝐹 Fn 𝒫 𝐴) |
| 53 | 12, 52 | syl 17 |
. . . . . . . 8
⊢ (𝑔 ∈ (𝒫 𝐴 ↑𝑚
ω) → 𝐹 Fn
𝒫 𝐴) |
| 54 | | imassrn 5477 |
. . . . . . . . 9
⊢ (𝐹 “ ran 𝑔) ⊆ ran 𝐹 |
| 55 | | frn 6053 |
. . . . . . . . . 10
⊢ (𝐹:𝒫 𝐴⟶𝒫 𝐴 → ran 𝐹 ⊆ 𝒫 𝐴) |
| 56 | 12, 55 | syl 17 |
. . . . . . . . 9
⊢ (𝑔 ∈ (𝒫 𝐴 ↑𝑚
ω) → ran 𝐹
⊆ 𝒫 𝐴) |
| 57 | 54, 56 | syl5ss 3614 |
. . . . . . . 8
⊢ (𝑔 ∈ (𝒫 𝐴 ↑𝑚
ω) → (𝐹 “
ran 𝑔) ⊆ 𝒫
𝐴) |
| 58 | | fnfvima 6496 |
. . . . . . . . 9
⊢ ((𝐹 Fn 𝒫 𝐴 ∧ (𝐹 “ ran 𝑔) ⊆ 𝒫 𝐴 ∧ ∪ (𝐹 “ ran 𝑔) ∈ (𝐹 “ ran 𝑔)) → (𝐹‘∪ (𝐹 “ ran 𝑔)) ∈ (𝐹 “ (𝐹 “ ran 𝑔))) |
| 59 | 58 | 3expia 1267 |
. . . . . . . 8
⊢ ((𝐹 Fn 𝒫 𝐴 ∧ (𝐹 “ ran 𝑔) ⊆ 𝒫 𝐴) → (∪
(𝐹 “ ran 𝑔) ∈ (𝐹 “ ran 𝑔) → (𝐹‘∪ (𝐹 “ ran 𝑔)) ∈ (𝐹 “ (𝐹 “ ran 𝑔)))) |
| 60 | 53, 57, 59 | syl2anc 693 |
. . . . . . 7
⊢ (𝑔 ∈ (𝒫 𝐴 ↑𝑚
ω) → (∪ (𝐹 “ ran 𝑔) ∈ (𝐹 “ ran 𝑔) → (𝐹‘∪ (𝐹 “ ran 𝑔)) ∈ (𝐹 “ (𝐹 “ ran 𝑔)))) |
| 61 | | incom 3805 |
. . . . . . . . . . . . 13
⊢ (dom
𝐹 ∩ ran 𝑔) = (ran 𝑔 ∩ dom 𝐹) |
| 62 | | frn 6053 |
. . . . . . . . . . . . . . . 16
⊢ (𝑔:ω⟶𝒫 𝐴 → ran 𝑔 ⊆ 𝒫 𝐴) |
| 63 | 13, 62 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝑔 ∈ (𝒫 𝐴 ↑𝑚
ω) → ran 𝑔
⊆ 𝒫 𝐴) |
| 64 | | fdm 6051 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹:𝒫 𝐴⟶𝒫 𝐴 → dom 𝐹 = 𝒫 𝐴) |
| 65 | 12, 64 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝑔 ∈ (𝒫 𝐴 ↑𝑚
ω) → dom 𝐹 =
𝒫 𝐴) |
| 66 | 63, 65 | sseqtr4d 3642 |
. . . . . . . . . . . . . 14
⊢ (𝑔 ∈ (𝒫 𝐴 ↑𝑚
ω) → ran 𝑔
⊆ dom 𝐹) |
| 67 | | df-ss 3588 |
. . . . . . . . . . . . . 14
⊢ (ran
𝑔 ⊆ dom 𝐹 ↔ (ran 𝑔 ∩ dom 𝐹) = ran 𝑔) |
| 68 | 66, 67 | sylib 208 |
. . . . . . . . . . . . 13
⊢ (𝑔 ∈ (𝒫 𝐴 ↑𝑚
ω) → (ran 𝑔
∩ dom 𝐹) = ran 𝑔) |
| 69 | 61, 68 | syl5eq 2668 |
. . . . . . . . . . . 12
⊢ (𝑔 ∈ (𝒫 𝐴 ↑𝑚
ω) → (dom 𝐹
∩ ran 𝑔) = ran 𝑔) |
| 70 | | fdm 6051 |
. . . . . . . . . . . . . . 15
⊢ (𝑔:ω⟶𝒫 𝐴 → dom 𝑔 = ω) |
| 71 | 13, 70 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝑔 ∈ (𝒫 𝐴 ↑𝑚
ω) → dom 𝑔 =
ω) |
| 72 | | peano1 7085 |
. . . . . . . . . . . . . . 15
⊢ ∅
∈ ω |
| 73 | | ne0i 3921 |
. . . . . . . . . . . . . . 15
⊢ (∅
∈ ω → ω ≠ ∅) |
| 74 | 72, 73 | mp1i 13 |
. . . . . . . . . . . . . 14
⊢ (𝑔 ∈ (𝒫 𝐴 ↑𝑚
ω) → ω ≠ ∅) |
| 75 | 71, 74 | eqnetrd 2861 |
. . . . . . . . . . . . 13
⊢ (𝑔 ∈ (𝒫 𝐴 ↑𝑚
ω) → dom 𝑔 ≠
∅) |
| 76 | | dm0rn0 5342 |
. . . . . . . . . . . . . 14
⊢ (dom
𝑔 = ∅ ↔ ran
𝑔 =
∅) |
| 77 | 76 | necon3bii 2846 |
. . . . . . . . . . . . 13
⊢ (dom
𝑔 ≠ ∅ ↔ ran
𝑔 ≠
∅) |
| 78 | 75, 77 | sylib 208 |
. . . . . . . . . . . 12
⊢ (𝑔 ∈ (𝒫 𝐴 ↑𝑚
ω) → ran 𝑔 ≠
∅) |
| 79 | 69, 78 | eqnetrd 2861 |
. . . . . . . . . . 11
⊢ (𝑔 ∈ (𝒫 𝐴 ↑𝑚
ω) → (dom 𝐹
∩ ran 𝑔) ≠
∅) |
| 80 | | imadisj 5484 |
. . . . . . . . . . . 12
⊢ ((𝐹 “ ran 𝑔) = ∅ ↔ (dom 𝐹 ∩ ran 𝑔) = ∅) |
| 81 | 80 | necon3bii 2846 |
. . . . . . . . . . 11
⊢ ((𝐹 “ ran 𝑔) ≠ ∅ ↔ (dom 𝐹 ∩ ran 𝑔) ≠ ∅) |
| 82 | 79, 81 | sylibr 224 |
. . . . . . . . . 10
⊢ (𝑔 ∈ (𝒫 𝐴 ↑𝑚
ω) → (𝐹 “
ran 𝑔) ≠
∅) |
| 83 | 2 | isf34lem4 9199 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ V ∧ ((𝐹 “ ran 𝑔) ⊆ 𝒫 𝐴 ∧ (𝐹 “ ran 𝑔) ≠ ∅)) → (𝐹‘∪ (𝐹 “ ran 𝑔)) = ∩ (𝐹 “ (𝐹 “ ran 𝑔))) |
| 84 | 10, 57, 82, 83 | syl12anc 1324 |
. . . . . . . . 9
⊢ (𝑔 ∈ (𝒫 𝐴 ↑𝑚
ω) → (𝐹‘∪ (𝐹 “ ran 𝑔)) = ∩ (𝐹 “ (𝐹 “ ran 𝑔))) |
| 85 | 2 | isf34lem3 9197 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ V ∧ ran 𝑔 ⊆ 𝒫 𝐴) → (𝐹 “ (𝐹 “ ran 𝑔)) = ran 𝑔) |
| 86 | 10, 63, 85 | syl2anc 693 |
. . . . . . . . . 10
⊢ (𝑔 ∈ (𝒫 𝐴 ↑𝑚
ω) → (𝐹 “
(𝐹 “ ran 𝑔)) = ran 𝑔) |
| 87 | 86 | inteqd 4480 |
. . . . . . . . 9
⊢ (𝑔 ∈ (𝒫 𝐴 ↑𝑚
ω) → ∩ (𝐹 “ (𝐹 “ ran 𝑔)) = ∩ ran 𝑔) |
| 88 | 84, 87 | eqtrd 2656 |
. . . . . . . 8
⊢ (𝑔 ∈ (𝒫 𝐴 ↑𝑚
ω) → (𝐹‘∪ (𝐹 “ ran 𝑔)) = ∩ ran 𝑔) |
| 89 | 88, 86 | eleq12d 2695 |
. . . . . . 7
⊢ (𝑔 ∈ (𝒫 𝐴 ↑𝑚
ω) → ((𝐹‘∪ (𝐹 “ ran 𝑔)) ∈ (𝐹 “ (𝐹 “ ran 𝑔)) ↔ ∩ ran
𝑔 ∈ ran 𝑔)) |
| 90 | 60, 89 | sylibd 229 |
. . . . . 6
⊢ (𝑔 ∈ (𝒫 𝐴 ↑𝑚
ω) → (∪ (𝐹 “ ran 𝑔) ∈ (𝐹 “ ran 𝑔) → ∩ ran
𝑔 ∈ ran 𝑔)) |
| 91 | 51, 90 | imim12d 81 |
. . . . 5
⊢ (𝑔 ∈ (𝒫 𝐴 ↑𝑚
ω) → ((∀𝑦
∈ ω ((𝐹 ∘
𝑔)‘𝑦) ⊆ ((𝐹 ∘ 𝑔)‘suc 𝑦) → ∪ (𝐹 “ ran 𝑔) ∈ (𝐹 “ ran 𝑔)) → (∀𝑦 ∈ ω (𝑔‘suc 𝑦) ⊆ (𝑔‘𝑦) → ∩ ran
𝑔 ∈ ran 𝑔))) |
| 92 | 30, 91 | sylcom 30 |
. . . 4
⊢
(∀𝑓 ∈
(𝒫 𝐴
↑𝑚 ω)(∀𝑦 ∈ ω (𝑓‘𝑦) ⊆ (𝑓‘suc 𝑦) → ∪ ran
𝑓 ∈ ran 𝑓) → (𝑔 ∈ (𝒫 𝐴 ↑𝑚 ω) →
(∀𝑦 ∈ ω
(𝑔‘suc 𝑦) ⊆ (𝑔‘𝑦) → ∩ ran
𝑔 ∈ ran 𝑔))) |
| 93 | 92 | ralrimiv 2965 |
. . 3
⊢
(∀𝑓 ∈
(𝒫 𝐴
↑𝑚 ω)(∀𝑦 ∈ ω (𝑓‘𝑦) ⊆ (𝑓‘suc 𝑦) → ∪ ran
𝑓 ∈ ran 𝑓) → ∀𝑔 ∈ (𝒫 𝐴 ↑𝑚
ω)(∀𝑦 ∈
ω (𝑔‘suc 𝑦) ⊆ (𝑔‘𝑦) → ∩ ran
𝑔 ∈ ran 𝑔)) |
| 94 | | isfin3-3 9190 |
. . 3
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ FinIII ↔
∀𝑔 ∈ (𝒫
𝐴
↑𝑚 ω)(∀𝑦 ∈ ω (𝑔‘suc 𝑦) ⊆ (𝑔‘𝑦) → ∩ ran
𝑔 ∈ ran 𝑔))) |
| 95 | 93, 94 | syl5ibr 236 |
. 2
⊢ (𝐴 ∈ 𝑉 → (∀𝑓 ∈ (𝒫 𝐴 ↑𝑚
ω)(∀𝑦 ∈
ω (𝑓‘𝑦) ⊆ (𝑓‘suc 𝑦) → ∪ ran
𝑓 ∈ ran 𝑓) → 𝐴 ∈ FinIII)) |
| 96 | 6, 95 | impbid2 216 |
1
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ FinIII ↔
∀𝑓 ∈ (𝒫
𝐴
↑𝑚 ω)(∀𝑦 ∈ ω (𝑓‘𝑦) ⊆ (𝑓‘suc 𝑦) → ∪ ran
𝑓 ∈ ran 𝑓))) |