MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isf34lem6 Structured version   Visualization version   GIF version

Theorem isf34lem6 9202
Description: Lemma for isfin3-4 9204. (Contributed by Stefan O'Rear, 7-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.)
Hypothesis
Ref Expression
compss.a 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴𝑥))
Assertion
Ref Expression
isf34lem6 (𝐴𝑉 → (𝐴 ∈ FinIII ↔ ∀𝑓 ∈ (𝒫 𝐴𝑚 ω)(∀𝑦 ∈ ω (𝑓𝑦) ⊆ (𝑓‘suc 𝑦) → ran 𝑓 ∈ ran 𝑓)))
Distinct variable groups:   𝑥,𝑓,𝑦,𝐴   𝑓,𝐹,𝑦   𝑥,𝑉,𝑦
Allowed substitution hints:   𝐹(𝑥)   𝑉(𝑓)

Proof of Theorem isf34lem6
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 elmapi 7879 . . . 4 (𝑓 ∈ (𝒫 𝐴𝑚 ω) → 𝑓:ω⟶𝒫 𝐴)
2 compss.a . . . . . 6 𝐹 = (𝑥 ∈ 𝒫 𝐴 ↦ (𝐴𝑥))
32isf34lem7 9201 . . . . 5 ((𝐴 ∈ FinIII𝑓:ω⟶𝒫 𝐴 ∧ ∀𝑦 ∈ ω (𝑓𝑦) ⊆ (𝑓‘suc 𝑦)) → ran 𝑓 ∈ ran 𝑓)
433expia 1267 . . . 4 ((𝐴 ∈ FinIII𝑓:ω⟶𝒫 𝐴) → (∀𝑦 ∈ ω (𝑓𝑦) ⊆ (𝑓‘suc 𝑦) → ran 𝑓 ∈ ran 𝑓))
51, 4sylan2 491 . . 3 ((𝐴 ∈ FinIII𝑓 ∈ (𝒫 𝐴𝑚 ω)) → (∀𝑦 ∈ ω (𝑓𝑦) ⊆ (𝑓‘suc 𝑦) → ran 𝑓 ∈ ran 𝑓))
65ralrimiva 2966 . 2 (𝐴 ∈ FinIII → ∀𝑓 ∈ (𝒫 𝐴𝑚 ω)(∀𝑦 ∈ ω (𝑓𝑦) ⊆ (𝑓‘suc 𝑦) → ran 𝑓 ∈ ran 𝑓))
7 elmapex 7878 . . . . . . . . . . 11 (𝑔 ∈ (𝒫 𝐴𝑚 ω) → (𝒫 𝐴 ∈ V ∧ ω ∈ V))
87simpld 475 . . . . . . . . . 10 (𝑔 ∈ (𝒫 𝐴𝑚 ω) → 𝒫 𝐴 ∈ V)
9 pwexb 6975 . . . . . . . . . 10 (𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V)
108, 9sylibr 224 . . . . . . . . 9 (𝑔 ∈ (𝒫 𝐴𝑚 ω) → 𝐴 ∈ V)
112isf34lem2 9195 . . . . . . . . 9 (𝐴 ∈ V → 𝐹:𝒫 𝐴⟶𝒫 𝐴)
1210, 11syl 17 . . . . . . . 8 (𝑔 ∈ (𝒫 𝐴𝑚 ω) → 𝐹:𝒫 𝐴⟶𝒫 𝐴)
13 elmapi 7879 . . . . . . . 8 (𝑔 ∈ (𝒫 𝐴𝑚 ω) → 𝑔:ω⟶𝒫 𝐴)
14 fco 6058 . . . . . . . 8 ((𝐹:𝒫 𝐴⟶𝒫 𝐴𝑔:ω⟶𝒫 𝐴) → (𝐹𝑔):ω⟶𝒫 𝐴)
1512, 13, 14syl2anc 693 . . . . . . 7 (𝑔 ∈ (𝒫 𝐴𝑚 ω) → (𝐹𝑔):ω⟶𝒫 𝐴)
16 elmapg 7870 . . . . . . . 8 ((𝒫 𝐴 ∈ V ∧ ω ∈ V) → ((𝐹𝑔) ∈ (𝒫 𝐴𝑚 ω) ↔ (𝐹𝑔):ω⟶𝒫 𝐴))
177, 16syl 17 . . . . . . 7 (𝑔 ∈ (𝒫 𝐴𝑚 ω) → ((𝐹𝑔) ∈ (𝒫 𝐴𝑚 ω) ↔ (𝐹𝑔):ω⟶𝒫 𝐴))
1815, 17mpbird 247 . . . . . 6 (𝑔 ∈ (𝒫 𝐴𝑚 ω) → (𝐹𝑔) ∈ (𝒫 𝐴𝑚 ω))
19 fveq1 6190 . . . . . . . . . 10 (𝑓 = (𝐹𝑔) → (𝑓𝑦) = ((𝐹𝑔)‘𝑦))
20 fveq1 6190 . . . . . . . . . 10 (𝑓 = (𝐹𝑔) → (𝑓‘suc 𝑦) = ((𝐹𝑔)‘suc 𝑦))
2119, 20sseq12d 3634 . . . . . . . . 9 (𝑓 = (𝐹𝑔) → ((𝑓𝑦) ⊆ (𝑓‘suc 𝑦) ↔ ((𝐹𝑔)‘𝑦) ⊆ ((𝐹𝑔)‘suc 𝑦)))
2221ralbidv 2986 . . . . . . . 8 (𝑓 = (𝐹𝑔) → (∀𝑦 ∈ ω (𝑓𝑦) ⊆ (𝑓‘suc 𝑦) ↔ ∀𝑦 ∈ ω ((𝐹𝑔)‘𝑦) ⊆ ((𝐹𝑔)‘suc 𝑦)))
23 rneq 5351 . . . . . . . . . . 11 (𝑓 = (𝐹𝑔) → ran 𝑓 = ran (𝐹𝑔))
24 rnco2 5642 . . . . . . . . . . 11 ran (𝐹𝑔) = (𝐹 “ ran 𝑔)
2523, 24syl6eq 2672 . . . . . . . . . 10 (𝑓 = (𝐹𝑔) → ran 𝑓 = (𝐹 “ ran 𝑔))
2625unieqd 4446 . . . . . . . . 9 (𝑓 = (𝐹𝑔) → ran 𝑓 = (𝐹 “ ran 𝑔))
2726, 25eleq12d 2695 . . . . . . . 8 (𝑓 = (𝐹𝑔) → ( ran 𝑓 ∈ ran 𝑓 (𝐹 “ ran 𝑔) ∈ (𝐹 “ ran 𝑔)))
2822, 27imbi12d 334 . . . . . . 7 (𝑓 = (𝐹𝑔) → ((∀𝑦 ∈ ω (𝑓𝑦) ⊆ (𝑓‘suc 𝑦) → ran 𝑓 ∈ ran 𝑓) ↔ (∀𝑦 ∈ ω ((𝐹𝑔)‘𝑦) ⊆ ((𝐹𝑔)‘suc 𝑦) → (𝐹 “ ran 𝑔) ∈ (𝐹 “ ran 𝑔))))
2928rspccv 3306 . . . . . 6 (∀𝑓 ∈ (𝒫 𝐴𝑚 ω)(∀𝑦 ∈ ω (𝑓𝑦) ⊆ (𝑓‘suc 𝑦) → ran 𝑓 ∈ ran 𝑓) → ((𝐹𝑔) ∈ (𝒫 𝐴𝑚 ω) → (∀𝑦 ∈ ω ((𝐹𝑔)‘𝑦) ⊆ ((𝐹𝑔)‘suc 𝑦) → (𝐹 “ ran 𝑔) ∈ (𝐹 “ ran 𝑔))))
3018, 29syl5 34 . . . . 5 (∀𝑓 ∈ (𝒫 𝐴𝑚 ω)(∀𝑦 ∈ ω (𝑓𝑦) ⊆ (𝑓‘suc 𝑦) → ran 𝑓 ∈ ran 𝑓) → (𝑔 ∈ (𝒫 𝐴𝑚 ω) → (∀𝑦 ∈ ω ((𝐹𝑔)‘𝑦) ⊆ ((𝐹𝑔)‘suc 𝑦) → (𝐹 “ ran 𝑔) ∈ (𝐹 “ ran 𝑔))))
31 sscon 3744 . . . . . . . . 9 ((𝑔‘suc 𝑦) ⊆ (𝑔𝑦) → (𝐴 ∖ (𝑔𝑦)) ⊆ (𝐴 ∖ (𝑔‘suc 𝑦)))
3210adantr 481 . . . . . . . . . . 11 ((𝑔 ∈ (𝒫 𝐴𝑚 ω) ∧ 𝑦 ∈ ω) → 𝐴 ∈ V)
3313ffvelrnda 6359 . . . . . . . . . . . 12 ((𝑔 ∈ (𝒫 𝐴𝑚 ω) ∧ 𝑦 ∈ ω) → (𝑔𝑦) ∈ 𝒫 𝐴)
3433elpwid 4170 . . . . . . . . . . 11 ((𝑔 ∈ (𝒫 𝐴𝑚 ω) ∧ 𝑦 ∈ ω) → (𝑔𝑦) ⊆ 𝐴)
352isf34lem1 9194 . . . . . . . . . . 11 ((𝐴 ∈ V ∧ (𝑔𝑦) ⊆ 𝐴) → (𝐹‘(𝑔𝑦)) = (𝐴 ∖ (𝑔𝑦)))
3632, 34, 35syl2anc 693 . . . . . . . . . 10 ((𝑔 ∈ (𝒫 𝐴𝑚 ω) ∧ 𝑦 ∈ ω) → (𝐹‘(𝑔𝑦)) = (𝐴 ∖ (𝑔𝑦)))
37 peano2 7086 . . . . . . . . . . . . 13 (𝑦 ∈ ω → suc 𝑦 ∈ ω)
38 ffvelrn 6357 . . . . . . . . . . . . 13 ((𝑔:ω⟶𝒫 𝐴 ∧ suc 𝑦 ∈ ω) → (𝑔‘suc 𝑦) ∈ 𝒫 𝐴)
3913, 37, 38syl2an 494 . . . . . . . . . . . 12 ((𝑔 ∈ (𝒫 𝐴𝑚 ω) ∧ 𝑦 ∈ ω) → (𝑔‘suc 𝑦) ∈ 𝒫 𝐴)
4039elpwid 4170 . . . . . . . . . . 11 ((𝑔 ∈ (𝒫 𝐴𝑚 ω) ∧ 𝑦 ∈ ω) → (𝑔‘suc 𝑦) ⊆ 𝐴)
412isf34lem1 9194 . . . . . . . . . . 11 ((𝐴 ∈ V ∧ (𝑔‘suc 𝑦) ⊆ 𝐴) → (𝐹‘(𝑔‘suc 𝑦)) = (𝐴 ∖ (𝑔‘suc 𝑦)))
4232, 40, 41syl2anc 693 . . . . . . . . . 10 ((𝑔 ∈ (𝒫 𝐴𝑚 ω) ∧ 𝑦 ∈ ω) → (𝐹‘(𝑔‘suc 𝑦)) = (𝐴 ∖ (𝑔‘suc 𝑦)))
4336, 42sseq12d 3634 . . . . . . . . 9 ((𝑔 ∈ (𝒫 𝐴𝑚 ω) ∧ 𝑦 ∈ ω) → ((𝐹‘(𝑔𝑦)) ⊆ (𝐹‘(𝑔‘suc 𝑦)) ↔ (𝐴 ∖ (𝑔𝑦)) ⊆ (𝐴 ∖ (𝑔‘suc 𝑦))))
4431, 43syl5ibr 236 . . . . . . . 8 ((𝑔 ∈ (𝒫 𝐴𝑚 ω) ∧ 𝑦 ∈ ω) → ((𝑔‘suc 𝑦) ⊆ (𝑔𝑦) → (𝐹‘(𝑔𝑦)) ⊆ (𝐹‘(𝑔‘suc 𝑦))))
45 fvco3 6275 . . . . . . . . . 10 ((𝑔:ω⟶𝒫 𝐴𝑦 ∈ ω) → ((𝐹𝑔)‘𝑦) = (𝐹‘(𝑔𝑦)))
4613, 45sylan 488 . . . . . . . . 9 ((𝑔 ∈ (𝒫 𝐴𝑚 ω) ∧ 𝑦 ∈ ω) → ((𝐹𝑔)‘𝑦) = (𝐹‘(𝑔𝑦)))
47 fvco3 6275 . . . . . . . . . 10 ((𝑔:ω⟶𝒫 𝐴 ∧ suc 𝑦 ∈ ω) → ((𝐹𝑔)‘suc 𝑦) = (𝐹‘(𝑔‘suc 𝑦)))
4813, 37, 47syl2an 494 . . . . . . . . 9 ((𝑔 ∈ (𝒫 𝐴𝑚 ω) ∧ 𝑦 ∈ ω) → ((𝐹𝑔)‘suc 𝑦) = (𝐹‘(𝑔‘suc 𝑦)))
4946, 48sseq12d 3634 . . . . . . . 8 ((𝑔 ∈ (𝒫 𝐴𝑚 ω) ∧ 𝑦 ∈ ω) → (((𝐹𝑔)‘𝑦) ⊆ ((𝐹𝑔)‘suc 𝑦) ↔ (𝐹‘(𝑔𝑦)) ⊆ (𝐹‘(𝑔‘suc 𝑦))))
5044, 49sylibrd 249 . . . . . . 7 ((𝑔 ∈ (𝒫 𝐴𝑚 ω) ∧ 𝑦 ∈ ω) → ((𝑔‘suc 𝑦) ⊆ (𝑔𝑦) → ((𝐹𝑔)‘𝑦) ⊆ ((𝐹𝑔)‘suc 𝑦)))
5150ralimdva 2962 . . . . . 6 (𝑔 ∈ (𝒫 𝐴𝑚 ω) → (∀𝑦 ∈ ω (𝑔‘suc 𝑦) ⊆ (𝑔𝑦) → ∀𝑦 ∈ ω ((𝐹𝑔)‘𝑦) ⊆ ((𝐹𝑔)‘suc 𝑦)))
52 ffn 6045 . . . . . . . . 9 (𝐹:𝒫 𝐴⟶𝒫 𝐴𝐹 Fn 𝒫 𝐴)
5312, 52syl 17 . . . . . . . 8 (𝑔 ∈ (𝒫 𝐴𝑚 ω) → 𝐹 Fn 𝒫 𝐴)
54 imassrn 5477 . . . . . . . . 9 (𝐹 “ ran 𝑔) ⊆ ran 𝐹
55 frn 6053 . . . . . . . . . 10 (𝐹:𝒫 𝐴⟶𝒫 𝐴 → ran 𝐹 ⊆ 𝒫 𝐴)
5612, 55syl 17 . . . . . . . . 9 (𝑔 ∈ (𝒫 𝐴𝑚 ω) → ran 𝐹 ⊆ 𝒫 𝐴)
5754, 56syl5ss 3614 . . . . . . . 8 (𝑔 ∈ (𝒫 𝐴𝑚 ω) → (𝐹 “ ran 𝑔) ⊆ 𝒫 𝐴)
58 fnfvima 6496 . . . . . . . . 9 ((𝐹 Fn 𝒫 𝐴 ∧ (𝐹 “ ran 𝑔) ⊆ 𝒫 𝐴 (𝐹 “ ran 𝑔) ∈ (𝐹 “ ran 𝑔)) → (𝐹 (𝐹 “ ran 𝑔)) ∈ (𝐹 “ (𝐹 “ ran 𝑔)))
59583expia 1267 . . . . . . . 8 ((𝐹 Fn 𝒫 𝐴 ∧ (𝐹 “ ran 𝑔) ⊆ 𝒫 𝐴) → ( (𝐹 “ ran 𝑔) ∈ (𝐹 “ ran 𝑔) → (𝐹 (𝐹 “ ran 𝑔)) ∈ (𝐹 “ (𝐹 “ ran 𝑔))))
6053, 57, 59syl2anc 693 . . . . . . 7 (𝑔 ∈ (𝒫 𝐴𝑚 ω) → ( (𝐹 “ ran 𝑔) ∈ (𝐹 “ ran 𝑔) → (𝐹 (𝐹 “ ran 𝑔)) ∈ (𝐹 “ (𝐹 “ ran 𝑔))))
61 incom 3805 . . . . . . . . . . . . 13 (dom 𝐹 ∩ ran 𝑔) = (ran 𝑔 ∩ dom 𝐹)
62 frn 6053 . . . . . . . . . . . . . . . 16 (𝑔:ω⟶𝒫 𝐴 → ran 𝑔 ⊆ 𝒫 𝐴)
6313, 62syl 17 . . . . . . . . . . . . . . 15 (𝑔 ∈ (𝒫 𝐴𝑚 ω) → ran 𝑔 ⊆ 𝒫 𝐴)
64 fdm 6051 . . . . . . . . . . . . . . . 16 (𝐹:𝒫 𝐴⟶𝒫 𝐴 → dom 𝐹 = 𝒫 𝐴)
6512, 64syl 17 . . . . . . . . . . . . . . 15 (𝑔 ∈ (𝒫 𝐴𝑚 ω) → dom 𝐹 = 𝒫 𝐴)
6663, 65sseqtr4d 3642 . . . . . . . . . . . . . 14 (𝑔 ∈ (𝒫 𝐴𝑚 ω) → ran 𝑔 ⊆ dom 𝐹)
67 df-ss 3588 . . . . . . . . . . . . . 14 (ran 𝑔 ⊆ dom 𝐹 ↔ (ran 𝑔 ∩ dom 𝐹) = ran 𝑔)
6866, 67sylib 208 . . . . . . . . . . . . 13 (𝑔 ∈ (𝒫 𝐴𝑚 ω) → (ran 𝑔 ∩ dom 𝐹) = ran 𝑔)
6961, 68syl5eq 2668 . . . . . . . . . . . 12 (𝑔 ∈ (𝒫 𝐴𝑚 ω) → (dom 𝐹 ∩ ran 𝑔) = ran 𝑔)
70 fdm 6051 . . . . . . . . . . . . . . 15 (𝑔:ω⟶𝒫 𝐴 → dom 𝑔 = ω)
7113, 70syl 17 . . . . . . . . . . . . . 14 (𝑔 ∈ (𝒫 𝐴𝑚 ω) → dom 𝑔 = ω)
72 peano1 7085 . . . . . . . . . . . . . . 15 ∅ ∈ ω
73 ne0i 3921 . . . . . . . . . . . . . . 15 (∅ ∈ ω → ω ≠ ∅)
7472, 73mp1i 13 . . . . . . . . . . . . . 14 (𝑔 ∈ (𝒫 𝐴𝑚 ω) → ω ≠ ∅)
7571, 74eqnetrd 2861 . . . . . . . . . . . . 13 (𝑔 ∈ (𝒫 𝐴𝑚 ω) → dom 𝑔 ≠ ∅)
76 dm0rn0 5342 . . . . . . . . . . . . . 14 (dom 𝑔 = ∅ ↔ ran 𝑔 = ∅)
7776necon3bii 2846 . . . . . . . . . . . . 13 (dom 𝑔 ≠ ∅ ↔ ran 𝑔 ≠ ∅)
7875, 77sylib 208 . . . . . . . . . . . 12 (𝑔 ∈ (𝒫 𝐴𝑚 ω) → ran 𝑔 ≠ ∅)
7969, 78eqnetrd 2861 . . . . . . . . . . 11 (𝑔 ∈ (𝒫 𝐴𝑚 ω) → (dom 𝐹 ∩ ran 𝑔) ≠ ∅)
80 imadisj 5484 . . . . . . . . . . . 12 ((𝐹 “ ran 𝑔) = ∅ ↔ (dom 𝐹 ∩ ran 𝑔) = ∅)
8180necon3bii 2846 . . . . . . . . . . 11 ((𝐹 “ ran 𝑔) ≠ ∅ ↔ (dom 𝐹 ∩ ran 𝑔) ≠ ∅)
8279, 81sylibr 224 . . . . . . . . . 10 (𝑔 ∈ (𝒫 𝐴𝑚 ω) → (𝐹 “ ran 𝑔) ≠ ∅)
832isf34lem4 9199 . . . . . . . . . 10 ((𝐴 ∈ V ∧ ((𝐹 “ ran 𝑔) ⊆ 𝒫 𝐴 ∧ (𝐹 “ ran 𝑔) ≠ ∅)) → (𝐹 (𝐹 “ ran 𝑔)) = (𝐹 “ (𝐹 “ ran 𝑔)))
8410, 57, 82, 83syl12anc 1324 . . . . . . . . 9 (𝑔 ∈ (𝒫 𝐴𝑚 ω) → (𝐹 (𝐹 “ ran 𝑔)) = (𝐹 “ (𝐹 “ ran 𝑔)))
852isf34lem3 9197 . . . . . . . . . . 11 ((𝐴 ∈ V ∧ ran 𝑔 ⊆ 𝒫 𝐴) → (𝐹 “ (𝐹 “ ran 𝑔)) = ran 𝑔)
8610, 63, 85syl2anc 693 . . . . . . . . . 10 (𝑔 ∈ (𝒫 𝐴𝑚 ω) → (𝐹 “ (𝐹 “ ran 𝑔)) = ran 𝑔)
8786inteqd 4480 . . . . . . . . 9 (𝑔 ∈ (𝒫 𝐴𝑚 ω) → (𝐹 “ (𝐹 “ ran 𝑔)) = ran 𝑔)
8884, 87eqtrd 2656 . . . . . . . 8 (𝑔 ∈ (𝒫 𝐴𝑚 ω) → (𝐹 (𝐹 “ ran 𝑔)) = ran 𝑔)
8988, 86eleq12d 2695 . . . . . . 7 (𝑔 ∈ (𝒫 𝐴𝑚 ω) → ((𝐹 (𝐹 “ ran 𝑔)) ∈ (𝐹 “ (𝐹 “ ran 𝑔)) ↔ ran 𝑔 ∈ ran 𝑔))
9060, 89sylibd 229 . . . . . 6 (𝑔 ∈ (𝒫 𝐴𝑚 ω) → ( (𝐹 “ ran 𝑔) ∈ (𝐹 “ ran 𝑔) → ran 𝑔 ∈ ran 𝑔))
9151, 90imim12d 81 . . . . 5 (𝑔 ∈ (𝒫 𝐴𝑚 ω) → ((∀𝑦 ∈ ω ((𝐹𝑔)‘𝑦) ⊆ ((𝐹𝑔)‘suc 𝑦) → (𝐹 “ ran 𝑔) ∈ (𝐹 “ ran 𝑔)) → (∀𝑦 ∈ ω (𝑔‘suc 𝑦) ⊆ (𝑔𝑦) → ran 𝑔 ∈ ran 𝑔)))
9230, 91sylcom 30 . . . 4 (∀𝑓 ∈ (𝒫 𝐴𝑚 ω)(∀𝑦 ∈ ω (𝑓𝑦) ⊆ (𝑓‘suc 𝑦) → ran 𝑓 ∈ ran 𝑓) → (𝑔 ∈ (𝒫 𝐴𝑚 ω) → (∀𝑦 ∈ ω (𝑔‘suc 𝑦) ⊆ (𝑔𝑦) → ran 𝑔 ∈ ran 𝑔)))
9392ralrimiv 2965 . . 3 (∀𝑓 ∈ (𝒫 𝐴𝑚 ω)(∀𝑦 ∈ ω (𝑓𝑦) ⊆ (𝑓‘suc 𝑦) → ran 𝑓 ∈ ran 𝑓) → ∀𝑔 ∈ (𝒫 𝐴𝑚 ω)(∀𝑦 ∈ ω (𝑔‘suc 𝑦) ⊆ (𝑔𝑦) → ran 𝑔 ∈ ran 𝑔))
94 isfin3-3 9190 . . 3 (𝐴𝑉 → (𝐴 ∈ FinIII ↔ ∀𝑔 ∈ (𝒫 𝐴𝑚 ω)(∀𝑦 ∈ ω (𝑔‘suc 𝑦) ⊆ (𝑔𝑦) → ran 𝑔 ∈ ran 𝑔)))
9593, 94syl5ibr 236 . 2 (𝐴𝑉 → (∀𝑓 ∈ (𝒫 𝐴𝑚 ω)(∀𝑦 ∈ ω (𝑓𝑦) ⊆ (𝑓‘suc 𝑦) → ran 𝑓 ∈ ran 𝑓) → 𝐴 ∈ FinIII))
966, 95impbid2 216 1 (𝐴𝑉 → (𝐴 ∈ FinIII ↔ ∀𝑓 ∈ (𝒫 𝐴𝑚 ω)(∀𝑦 ∈ ω (𝑓𝑦) ⊆ (𝑓‘suc 𝑦) → ran 𝑓 ∈ ran 𝑓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wne 2794  wral 2912  Vcvv 3200  cdif 3571  cin 3573  wss 3574  c0 3915  𝒫 cpw 4158   cuni 4436   cint 4475  cmpt 4729  dom cdm 5114  ran crn 5115  cima 5117  ccom 5118  suc csuc 5725   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  ωcom 7065  𝑚 cmap 7857  FinIIIcfin3 9103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-rpss 6937  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-seqom 7543  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-wdom 8464  df-card 8765  df-fin4 9109  df-fin3 9110
This theorem is referenced by:  isfin3-4  9204
  Copyright terms: Public domain W3C validator