Proof of Theorem isfild
| Step | Hyp | Ref
| Expression |
| 1 | | isfild.1 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝐹 ↔ (𝑥 ⊆ 𝐴 ∧ 𝜓))) |
| 2 | | selpw 4165 |
. . . . . . 7
⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) |
| 3 | 2 | biimpri 218 |
. . . . . 6
⊢ (𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝒫 𝐴) |
| 4 | 3 | adantr 481 |
. . . . 5
⊢ ((𝑥 ⊆ 𝐴 ∧ 𝜓) → 𝑥 ∈ 𝒫 𝐴) |
| 5 | 1, 4 | syl6bi 243 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝐹 → 𝑥 ∈ 𝒫 𝐴)) |
| 6 | 5 | ssrdv 3609 |
. . 3
⊢ (𝜑 → 𝐹 ⊆ 𝒫 𝐴) |
| 7 | | isfild.4 |
. . . 4
⊢ (𝜑 → ¬ [∅ /
𝑥]𝜓) |
| 8 | | isfild.2 |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ V) |
| 9 | 1, 8 | isfildlem 21661 |
. . . . 5
⊢ (𝜑 → (∅ ∈ 𝐹 ↔ (∅ ⊆ 𝐴 ∧ [∅ / 𝑥]𝜓))) |
| 10 | | simpr 477 |
. . . . 5
⊢ ((∅
⊆ 𝐴 ∧
[∅ / 𝑥]𝜓) → [∅ / 𝑥]𝜓) |
| 11 | 9, 10 | syl6bi 243 |
. . . 4
⊢ (𝜑 → (∅ ∈ 𝐹 → [∅ / 𝑥]𝜓)) |
| 12 | 7, 11 | mtod 189 |
. . 3
⊢ (𝜑 → ¬ ∅ ∈ 𝐹) |
| 13 | | isfild.3 |
. . . . 5
⊢ (𝜑 → [𝐴 / 𝑥]𝜓) |
| 14 | | ssid 3624 |
. . . . 5
⊢ 𝐴 ⊆ 𝐴 |
| 15 | 13, 14 | jctil 560 |
. . . 4
⊢ (𝜑 → (𝐴 ⊆ 𝐴 ∧ [𝐴 / 𝑥]𝜓)) |
| 16 | 1, 8 | isfildlem 21661 |
. . . 4
⊢ (𝜑 → (𝐴 ∈ 𝐹 ↔ (𝐴 ⊆ 𝐴 ∧ [𝐴 / 𝑥]𝜓))) |
| 17 | 15, 16 | mpbird 247 |
. . 3
⊢ (𝜑 → 𝐴 ∈ 𝐹) |
| 18 | 6, 12, 17 | 3jca 1242 |
. 2
⊢ (𝜑 → (𝐹 ⊆ 𝒫 𝐴 ∧ ¬ ∅ ∈ 𝐹 ∧ 𝐴 ∈ 𝐹)) |
| 19 | | elpwi 4168 |
. . . 4
⊢ (𝑦 ∈ 𝒫 𝐴 → 𝑦 ⊆ 𝐴) |
| 20 | | isfild.5 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ⊆ 𝐴 ∧ 𝑧 ⊆ 𝑦) → ([𝑧 / 𝑥]𝜓 → [𝑦 / 𝑥]𝜓)) |
| 21 | | simp2 1062 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ⊆ 𝐴 ∧ 𝑧 ⊆ 𝑦) → 𝑦 ⊆ 𝐴) |
| 22 | 20, 21 | jctild 566 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ⊆ 𝐴 ∧ 𝑧 ⊆ 𝑦) → ([𝑧 / 𝑥]𝜓 → (𝑦 ⊆ 𝐴 ∧ [𝑦 / 𝑥]𝜓))) |
| 23 | 22 | adantld 483 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ⊆ 𝐴 ∧ 𝑧 ⊆ 𝑦) → ((𝑧 ⊆ 𝐴 ∧ [𝑧 / 𝑥]𝜓) → (𝑦 ⊆ 𝐴 ∧ [𝑦 / 𝑥]𝜓))) |
| 24 | 1, 8 | isfildlem 21661 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑧 ∈ 𝐹 ↔ (𝑧 ⊆ 𝐴 ∧ [𝑧 / 𝑥]𝜓))) |
| 25 | 24 | 3ad2ant1 1082 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ⊆ 𝐴 ∧ 𝑧 ⊆ 𝑦) → (𝑧 ∈ 𝐹 ↔ (𝑧 ⊆ 𝐴 ∧ [𝑧 / 𝑥]𝜓))) |
| 26 | 1, 8 | isfildlem 21661 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑦 ∈ 𝐹 ↔ (𝑦 ⊆ 𝐴 ∧ [𝑦 / 𝑥]𝜓))) |
| 27 | 26 | 3ad2ant1 1082 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ⊆ 𝐴 ∧ 𝑧 ⊆ 𝑦) → (𝑦 ∈ 𝐹 ↔ (𝑦 ⊆ 𝐴 ∧ [𝑦 / 𝑥]𝜓))) |
| 28 | 23, 25, 27 | 3imtr4d 283 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ⊆ 𝐴 ∧ 𝑧 ⊆ 𝑦) → (𝑧 ∈ 𝐹 → 𝑦 ∈ 𝐹)) |
| 29 | 28 | 3expa 1265 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ⊆ 𝐴) ∧ 𝑧 ⊆ 𝑦) → (𝑧 ∈ 𝐹 → 𝑦 ∈ 𝐹)) |
| 30 | 29 | impancom 456 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ⊆ 𝐴) ∧ 𝑧 ∈ 𝐹) → (𝑧 ⊆ 𝑦 → 𝑦 ∈ 𝐹)) |
| 31 | 30 | rexlimdva 3031 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ⊆ 𝐴) → (∃𝑧 ∈ 𝐹 𝑧 ⊆ 𝑦 → 𝑦 ∈ 𝐹)) |
| 32 | 31 | ex 450 |
. . . 4
⊢ (𝜑 → (𝑦 ⊆ 𝐴 → (∃𝑧 ∈ 𝐹 𝑧 ⊆ 𝑦 → 𝑦 ∈ 𝐹))) |
| 33 | 19, 32 | syl5 34 |
. . 3
⊢ (𝜑 → (𝑦 ∈ 𝒫 𝐴 → (∃𝑧 ∈ 𝐹 𝑧 ⊆ 𝑦 → 𝑦 ∈ 𝐹))) |
| 34 | 33 | ralrimiv 2965 |
. 2
⊢ (𝜑 → ∀𝑦 ∈ 𝒫 𝐴(∃𝑧 ∈ 𝐹 𝑧 ⊆ 𝑦 → 𝑦 ∈ 𝐹)) |
| 35 | | ssinss1 3841 |
. . . . . . 7
⊢ (𝑦 ⊆ 𝐴 → (𝑦 ∩ 𝑧) ⊆ 𝐴) |
| 36 | 35 | ad2antrr 762 |
. . . . . 6
⊢ (((𝑦 ⊆ 𝐴 ∧ [𝑦 / 𝑥]𝜓) ∧ (𝑧 ⊆ 𝐴 ∧ [𝑧 / 𝑥]𝜓)) → (𝑦 ∩ 𝑧) ⊆ 𝐴) |
| 37 | 36 | a1i 11 |
. . . . 5
⊢ (𝜑 → (((𝑦 ⊆ 𝐴 ∧ [𝑦 / 𝑥]𝜓) ∧ (𝑧 ⊆ 𝐴 ∧ [𝑧 / 𝑥]𝜓)) → (𝑦 ∩ 𝑧) ⊆ 𝐴)) |
| 38 | | an4 865 |
. . . . . 6
⊢ (((𝑦 ⊆ 𝐴 ∧ [𝑦 / 𝑥]𝜓) ∧ (𝑧 ⊆ 𝐴 ∧ [𝑧 / 𝑥]𝜓)) ↔ ((𝑦 ⊆ 𝐴 ∧ 𝑧 ⊆ 𝐴) ∧ ([𝑦 / 𝑥]𝜓 ∧ [𝑧 / 𝑥]𝜓))) |
| 39 | | isfild.6 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ⊆ 𝐴 ∧ 𝑧 ⊆ 𝐴) → (([𝑦 / 𝑥]𝜓 ∧ [𝑧 / 𝑥]𝜓) → [(𝑦 ∩ 𝑧) / 𝑥]𝜓)) |
| 40 | 39 | 3expb 1266 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ⊆ 𝐴)) → (([𝑦 / 𝑥]𝜓 ∧ [𝑧 / 𝑥]𝜓) → [(𝑦 ∩ 𝑧) / 𝑥]𝜓)) |
| 41 | 40 | expimpd 629 |
. . . . . 6
⊢ (𝜑 → (((𝑦 ⊆ 𝐴 ∧ 𝑧 ⊆ 𝐴) ∧ ([𝑦 / 𝑥]𝜓 ∧ [𝑧 / 𝑥]𝜓)) → [(𝑦 ∩ 𝑧) / 𝑥]𝜓)) |
| 42 | 38, 41 | syl5bi 232 |
. . . . 5
⊢ (𝜑 → (((𝑦 ⊆ 𝐴 ∧ [𝑦 / 𝑥]𝜓) ∧ (𝑧 ⊆ 𝐴 ∧ [𝑧 / 𝑥]𝜓)) → [(𝑦 ∩ 𝑧) / 𝑥]𝜓)) |
| 43 | 37, 42 | jcad 555 |
. . . 4
⊢ (𝜑 → (((𝑦 ⊆ 𝐴 ∧ [𝑦 / 𝑥]𝜓) ∧ (𝑧 ⊆ 𝐴 ∧ [𝑧 / 𝑥]𝜓)) → ((𝑦 ∩ 𝑧) ⊆ 𝐴 ∧ [(𝑦 ∩ 𝑧) / 𝑥]𝜓))) |
| 44 | 26, 24 | anbi12d 747 |
. . . 4
⊢ (𝜑 → ((𝑦 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹) ↔ ((𝑦 ⊆ 𝐴 ∧ [𝑦 / 𝑥]𝜓) ∧ (𝑧 ⊆ 𝐴 ∧ [𝑧 / 𝑥]𝜓)))) |
| 45 | 1, 8 | isfildlem 21661 |
. . . 4
⊢ (𝜑 → ((𝑦 ∩ 𝑧) ∈ 𝐹 ↔ ((𝑦 ∩ 𝑧) ⊆ 𝐴 ∧ [(𝑦 ∩ 𝑧) / 𝑥]𝜓))) |
| 46 | 43, 44, 45 | 3imtr4d 283 |
. . 3
⊢ (𝜑 → ((𝑦 ∈ 𝐹 ∧ 𝑧 ∈ 𝐹) → (𝑦 ∩ 𝑧) ∈ 𝐹)) |
| 47 | 46 | ralrimivv 2970 |
. 2
⊢ (𝜑 → ∀𝑦 ∈ 𝐹 ∀𝑧 ∈ 𝐹 (𝑦 ∩ 𝑧) ∈ 𝐹) |
| 48 | | isfil2 21660 |
. 2
⊢ (𝐹 ∈ (Fil‘𝐴) ↔ ((𝐹 ⊆ 𝒫 𝐴 ∧ ¬ ∅ ∈ 𝐹 ∧ 𝐴 ∈ 𝐹) ∧ ∀𝑦 ∈ 𝒫 𝐴(∃𝑧 ∈ 𝐹 𝑧 ⊆ 𝑦 → 𝑦 ∈ 𝐹) ∧ ∀𝑦 ∈ 𝐹 ∀𝑧 ∈ 𝐹 (𝑦 ∩ 𝑧) ∈ 𝐹)) |
| 49 | 18, 34, 47, 48 | syl3anbrc 1246 |
1
⊢ (𝜑 → 𝐹 ∈ (Fil‘𝐴)) |