| Step | Hyp | Ref
| Expression |
| 1 | | difeq2 3722 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝐴 ∖ 𝑥) = (𝐴 ∖ 𝑦)) |
| 2 | 1 | eleq1d 2686 |
. . . . 5
⊢ (𝑥 = 𝑦 → ((𝐴 ∖ 𝑥) ∈ Fin ↔ (𝐴 ∖ 𝑦) ∈ Fin)) |
| 3 | 2 | elrab 3363 |
. . . 4
⊢ (𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∖ 𝑥) ∈ Fin} ↔ (𝑦 ∈ 𝒫 𝑋 ∧ (𝐴 ∖ 𝑦) ∈ Fin)) |
| 4 | | selpw 4165 |
. . . . 5
⊢ (𝑦 ∈ 𝒫 𝑋 ↔ 𝑦 ⊆ 𝑋) |
| 5 | 4 | anbi1i 731 |
. . . 4
⊢ ((𝑦 ∈ 𝒫 𝑋 ∧ (𝐴 ∖ 𝑦) ∈ Fin) ↔ (𝑦 ⊆ 𝑋 ∧ (𝐴 ∖ 𝑦) ∈ Fin)) |
| 6 | 3, 5 | bitri 264 |
. . 3
⊢ (𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∖ 𝑥) ∈ Fin} ↔ (𝑦 ⊆ 𝑋 ∧ (𝐴 ∖ 𝑦) ∈ Fin)) |
| 7 | 6 | a1i 11 |
. 2
⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑋 ∧ ¬ 𝐴 ∈ Fin) → (𝑦 ∈ {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∖ 𝑥) ∈ Fin} ↔ (𝑦 ⊆ 𝑋 ∧ (𝐴 ∖ 𝑦) ∈ Fin))) |
| 8 | | elex 3212 |
. . 3
⊢ (𝑋 ∈ 𝑉 → 𝑋 ∈ V) |
| 9 | 8 | 3ad2ant1 1082 |
. 2
⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑋 ∧ ¬ 𝐴 ∈ Fin) → 𝑋 ∈ V) |
| 10 | | ssdif0 3942 |
. . . . 5
⊢ (𝐴 ⊆ 𝑋 ↔ (𝐴 ∖ 𝑋) = ∅) |
| 11 | | 0fin 8188 |
. . . . . 6
⊢ ∅
∈ Fin |
| 12 | | eleq1 2689 |
. . . . . 6
⊢ ((𝐴 ∖ 𝑋) = ∅ → ((𝐴 ∖ 𝑋) ∈ Fin ↔ ∅ ∈
Fin)) |
| 13 | 11, 12 | mpbiri 248 |
. . . . 5
⊢ ((𝐴 ∖ 𝑋) = ∅ → (𝐴 ∖ 𝑋) ∈ Fin) |
| 14 | 10, 13 | sylbi 207 |
. . . 4
⊢ (𝐴 ⊆ 𝑋 → (𝐴 ∖ 𝑋) ∈ Fin) |
| 15 | | difeq2 3722 |
. . . . . . 7
⊢ (𝑦 = 𝑋 → (𝐴 ∖ 𝑦) = (𝐴 ∖ 𝑋)) |
| 16 | 15 | eleq1d 2686 |
. . . . . 6
⊢ (𝑦 = 𝑋 → ((𝐴 ∖ 𝑦) ∈ Fin ↔ (𝐴 ∖ 𝑋) ∈ Fin)) |
| 17 | 16 | sbcieg 3468 |
. . . . 5
⊢ (𝑋 ∈ 𝑉 → ([𝑋 / 𝑦](𝐴 ∖ 𝑦) ∈ Fin ↔ (𝐴 ∖ 𝑋) ∈ Fin)) |
| 18 | 17 | biimpar 502 |
. . . 4
⊢ ((𝑋 ∈ 𝑉 ∧ (𝐴 ∖ 𝑋) ∈ Fin) → [𝑋 / 𝑦](𝐴 ∖ 𝑦) ∈ Fin) |
| 19 | 14, 18 | sylan2 491 |
. . 3
⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑋) → [𝑋 / 𝑦](𝐴 ∖ 𝑦) ∈ Fin) |
| 20 | 19 | 3adant3 1081 |
. 2
⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑋 ∧ ¬ 𝐴 ∈ Fin) → [𝑋 / 𝑦](𝐴 ∖ 𝑦) ∈ Fin) |
| 21 | | 0ex 4790 |
. . . . . 6
⊢ ∅
∈ V |
| 22 | | difeq2 3722 |
. . . . . . 7
⊢ (𝑦 = ∅ → (𝐴 ∖ 𝑦) = (𝐴 ∖ ∅)) |
| 23 | 22 | eleq1d 2686 |
. . . . . 6
⊢ (𝑦 = ∅ → ((𝐴 ∖ 𝑦) ∈ Fin ↔ (𝐴 ∖ ∅) ∈
Fin)) |
| 24 | 21, 23 | sbcie 3470 |
. . . . 5
⊢
([∅ / 𝑦](𝐴 ∖ 𝑦) ∈ Fin ↔ (𝐴 ∖ ∅) ∈
Fin) |
| 25 | | dif0 3950 |
. . . . . 6
⊢ (𝐴 ∖ ∅) = 𝐴 |
| 26 | 25 | eleq1i 2692 |
. . . . 5
⊢ ((𝐴 ∖ ∅) ∈ Fin
↔ 𝐴 ∈
Fin) |
| 27 | 24, 26 | sylbb 209 |
. . . 4
⊢
([∅ / 𝑦](𝐴 ∖ 𝑦) ∈ Fin → 𝐴 ∈ Fin) |
| 28 | 27 | con3i 150 |
. . 3
⊢ (¬
𝐴 ∈ Fin → ¬
[∅ / 𝑦](𝐴 ∖ 𝑦) ∈ Fin) |
| 29 | 28 | 3ad2ant3 1084 |
. 2
⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑋 ∧ ¬ 𝐴 ∈ Fin) → ¬ [∅ /
𝑦](𝐴 ∖ 𝑦) ∈ Fin) |
| 30 | | sscon 3744 |
. . . . 5
⊢ (𝑤 ⊆ 𝑧 → (𝐴 ∖ 𝑧) ⊆ (𝐴 ∖ 𝑤)) |
| 31 | | ssfi 8180 |
. . . . . 6
⊢ (((𝐴 ∖ 𝑤) ∈ Fin ∧ (𝐴 ∖ 𝑧) ⊆ (𝐴 ∖ 𝑤)) → (𝐴 ∖ 𝑧) ∈ Fin) |
| 32 | 31 | expcom 451 |
. . . . 5
⊢ ((𝐴 ∖ 𝑧) ⊆ (𝐴 ∖ 𝑤) → ((𝐴 ∖ 𝑤) ∈ Fin → (𝐴 ∖ 𝑧) ∈ Fin)) |
| 33 | 30, 32 | syl 17 |
. . . 4
⊢ (𝑤 ⊆ 𝑧 → ((𝐴 ∖ 𝑤) ∈ Fin → (𝐴 ∖ 𝑧) ∈ Fin)) |
| 34 | | vex 3203 |
. . . . 5
⊢ 𝑤 ∈ V |
| 35 | | difeq2 3722 |
. . . . . 6
⊢ (𝑦 = 𝑤 → (𝐴 ∖ 𝑦) = (𝐴 ∖ 𝑤)) |
| 36 | 35 | eleq1d 2686 |
. . . . 5
⊢ (𝑦 = 𝑤 → ((𝐴 ∖ 𝑦) ∈ Fin ↔ (𝐴 ∖ 𝑤) ∈ Fin)) |
| 37 | 34, 36 | sbcie 3470 |
. . . 4
⊢
([𝑤 / 𝑦](𝐴 ∖ 𝑦) ∈ Fin ↔ (𝐴 ∖ 𝑤) ∈ Fin) |
| 38 | | vex 3203 |
. . . . 5
⊢ 𝑧 ∈ V |
| 39 | | difeq2 3722 |
. . . . . 6
⊢ (𝑦 = 𝑧 → (𝐴 ∖ 𝑦) = (𝐴 ∖ 𝑧)) |
| 40 | 39 | eleq1d 2686 |
. . . . 5
⊢ (𝑦 = 𝑧 → ((𝐴 ∖ 𝑦) ∈ Fin ↔ (𝐴 ∖ 𝑧) ∈ Fin)) |
| 41 | 38, 40 | sbcie 3470 |
. . . 4
⊢
([𝑧 / 𝑦](𝐴 ∖ 𝑦) ∈ Fin ↔ (𝐴 ∖ 𝑧) ∈ Fin) |
| 42 | 33, 37, 41 | 3imtr4g 285 |
. . 3
⊢ (𝑤 ⊆ 𝑧 → ([𝑤 / 𝑦](𝐴 ∖ 𝑦) ∈ Fin → [𝑧 / 𝑦](𝐴 ∖ 𝑦) ∈ Fin)) |
| 43 | 42 | 3ad2ant3 1084 |
. 2
⊢ (((𝑋 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑋 ∧ ¬ 𝐴 ∈ Fin) ∧ 𝑧 ⊆ 𝑋 ∧ 𝑤 ⊆ 𝑧) → ([𝑤 / 𝑦](𝐴 ∖ 𝑦) ∈ Fin → [𝑧 / 𝑦](𝐴 ∖ 𝑦) ∈ Fin)) |
| 44 | | difindi 3881 |
. . . . 5
⊢ (𝐴 ∖ (𝑧 ∩ 𝑤)) = ((𝐴 ∖ 𝑧) ∪ (𝐴 ∖ 𝑤)) |
| 45 | | unfi 8227 |
. . . . 5
⊢ (((𝐴 ∖ 𝑧) ∈ Fin ∧ (𝐴 ∖ 𝑤) ∈ Fin) → ((𝐴 ∖ 𝑧) ∪ (𝐴 ∖ 𝑤)) ∈ Fin) |
| 46 | 44, 45 | syl5eqel 2705 |
. . . 4
⊢ (((𝐴 ∖ 𝑧) ∈ Fin ∧ (𝐴 ∖ 𝑤) ∈ Fin) → (𝐴 ∖ (𝑧 ∩ 𝑤)) ∈ Fin) |
| 47 | 46 | a1i 11 |
. . 3
⊢ (((𝑋 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑋 ∧ ¬ 𝐴 ∈ Fin) ∧ 𝑧 ⊆ 𝑋 ∧ 𝑤 ⊆ 𝑋) → (((𝐴 ∖ 𝑧) ∈ Fin ∧ (𝐴 ∖ 𝑤) ∈ Fin) → (𝐴 ∖ (𝑧 ∩ 𝑤)) ∈ Fin)) |
| 48 | 41, 37 | anbi12i 733 |
. . 3
⊢
(([𝑧 / 𝑦](𝐴 ∖ 𝑦) ∈ Fin ∧ [𝑤 / 𝑦](𝐴 ∖ 𝑦) ∈ Fin) ↔ ((𝐴 ∖ 𝑧) ∈ Fin ∧ (𝐴 ∖ 𝑤) ∈ Fin)) |
| 49 | 38 | inex1 4799 |
. . . 4
⊢ (𝑧 ∩ 𝑤) ∈ V |
| 50 | | difeq2 3722 |
. . . . 5
⊢ (𝑦 = (𝑧 ∩ 𝑤) → (𝐴 ∖ 𝑦) = (𝐴 ∖ (𝑧 ∩ 𝑤))) |
| 51 | 50 | eleq1d 2686 |
. . . 4
⊢ (𝑦 = (𝑧 ∩ 𝑤) → ((𝐴 ∖ 𝑦) ∈ Fin ↔ (𝐴 ∖ (𝑧 ∩ 𝑤)) ∈ Fin)) |
| 52 | 49, 51 | sbcie 3470 |
. . 3
⊢
([(𝑧 ∩
𝑤) / 𝑦](𝐴 ∖ 𝑦) ∈ Fin ↔ (𝐴 ∖ (𝑧 ∩ 𝑤)) ∈ Fin) |
| 53 | 47, 48, 52 | 3imtr4g 285 |
. 2
⊢ (((𝑋 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑋 ∧ ¬ 𝐴 ∈ Fin) ∧ 𝑧 ⊆ 𝑋 ∧ 𝑤 ⊆ 𝑋) → (([𝑧 / 𝑦](𝐴 ∖ 𝑦) ∈ Fin ∧ [𝑤 / 𝑦](𝐴 ∖ 𝑦) ∈ Fin) → [(𝑧 ∩ 𝑤) / 𝑦](𝐴 ∖ 𝑦) ∈ Fin)) |
| 54 | 7, 9, 20, 29, 43, 53 | isfild 21662 |
1
⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑋 ∧ ¬ 𝐴 ∈ Fin) → {𝑥 ∈ 𝒫 𝑋 ∣ (𝐴 ∖ 𝑥) ∈ Fin} ∈ (Fil‘𝑋)) |