MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin56 Structured version   Visualization version   GIF version

Theorem fin56 9215
Description: Every V-finite set is VI-finite because multiplication dominates addition for cardinals. (Contributed by Stefan O'Rear, 29-Oct-2014.) (Revised by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
fin56 (𝐴 ∈ FinV𝐴 ∈ FinVI)

Proof of Theorem fin56
StepHypRef Expression
1 orc 400 . . . . 5 (𝐴 = ∅ → (𝐴 = ∅ ∨ 𝐴 ≈ 1𝑜))
2 sdom2en01 9124 . . . . 5 (𝐴 ≺ 2𝑜 ↔ (𝐴 = ∅ ∨ 𝐴 ≈ 1𝑜))
31, 2sylibr 224 . . . 4 (𝐴 = ∅ → 𝐴 ≺ 2𝑜)
43orcd 407 . . 3 (𝐴 = ∅ → (𝐴 ≺ 2𝑜𝐴 ≺ (𝐴 × 𝐴)))
5 onfin2 8152 . . . . . . . 8 ω = (On ∩ Fin)
6 inss2 3834 . . . . . . . 8 (On ∩ Fin) ⊆ Fin
75, 6eqsstri 3635 . . . . . . 7 ω ⊆ Fin
8 2onn 7720 . . . . . . 7 2𝑜 ∈ ω
97, 8sselii 3600 . . . . . 6 2𝑜 ∈ Fin
10 relsdom 7962 . . . . . . 7 Rel ≺
1110brrelexi 5158 . . . . . 6 (𝐴 ≺ (𝐴 +𝑐 𝐴) → 𝐴 ∈ V)
12 fidomtri 8819 . . . . . 6 ((2𝑜 ∈ Fin ∧ 𝐴 ∈ V) → (2𝑜𝐴 ↔ ¬ 𝐴 ≺ 2𝑜))
139, 11, 12sylancr 695 . . . . 5 (𝐴 ≺ (𝐴 +𝑐 𝐴) → (2𝑜𝐴 ↔ ¬ 𝐴 ≺ 2𝑜))
14 xp2cda 9002 . . . . . . . . . 10 (𝐴 ∈ V → (𝐴 × 2𝑜) = (𝐴 +𝑐 𝐴))
1511, 14syl 17 . . . . . . . . 9 (𝐴 ≺ (𝐴 +𝑐 𝐴) → (𝐴 × 2𝑜) = (𝐴 +𝑐 𝐴))
1615adantr 481 . . . . . . . 8 ((𝐴 ≺ (𝐴 +𝑐 𝐴) ∧ 2𝑜𝐴) → (𝐴 × 2𝑜) = (𝐴 +𝑐 𝐴))
17 xpdom2g 8056 . . . . . . . . 9 ((𝐴 ∈ V ∧ 2𝑜𝐴) → (𝐴 × 2𝑜) ≼ (𝐴 × 𝐴))
1811, 17sylan 488 . . . . . . . 8 ((𝐴 ≺ (𝐴 +𝑐 𝐴) ∧ 2𝑜𝐴) → (𝐴 × 2𝑜) ≼ (𝐴 × 𝐴))
1916, 18eqbrtrrd 4677 . . . . . . 7 ((𝐴 ≺ (𝐴 +𝑐 𝐴) ∧ 2𝑜𝐴) → (𝐴 +𝑐 𝐴) ≼ (𝐴 × 𝐴))
20 sdomdomtr 8093 . . . . . . 7 ((𝐴 ≺ (𝐴 +𝑐 𝐴) ∧ (𝐴 +𝑐 𝐴) ≼ (𝐴 × 𝐴)) → 𝐴 ≺ (𝐴 × 𝐴))
2119, 20syldan 487 . . . . . 6 ((𝐴 ≺ (𝐴 +𝑐 𝐴) ∧ 2𝑜𝐴) → 𝐴 ≺ (𝐴 × 𝐴))
2221ex 450 . . . . 5 (𝐴 ≺ (𝐴 +𝑐 𝐴) → (2𝑜𝐴𝐴 ≺ (𝐴 × 𝐴)))
2313, 22sylbird 250 . . . 4 (𝐴 ≺ (𝐴 +𝑐 𝐴) → (¬ 𝐴 ≺ 2𝑜𝐴 ≺ (𝐴 × 𝐴)))
2423orrd 393 . . 3 (𝐴 ≺ (𝐴 +𝑐 𝐴) → (𝐴 ≺ 2𝑜𝐴 ≺ (𝐴 × 𝐴)))
254, 24jaoi 394 . 2 ((𝐴 = ∅ ∨ 𝐴 ≺ (𝐴 +𝑐 𝐴)) → (𝐴 ≺ 2𝑜𝐴 ≺ (𝐴 × 𝐴)))
26 isfin5 9121 . 2 (𝐴 ∈ FinV ↔ (𝐴 = ∅ ∨ 𝐴 ≺ (𝐴 +𝑐 𝐴)))
27 isfin6 9122 . 2 (𝐴 ∈ FinVI ↔ (𝐴 ≺ 2𝑜𝐴 ≺ (𝐴 × 𝐴)))
2825, 26, 273imtr4i 281 1 (𝐴 ∈ FinV𝐴 ∈ FinVI)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  cin 3573  c0 3915   class class class wbr 4653   × cxp 5112  Oncon0 5723  (class class class)co 6650  ωcom 7065  1𝑜c1o 7553  2𝑜c2o 7554  cen 7952  cdom 7953  csdm 7954  Fincfn 7955   +𝑐 ccda 8989  FinVcfin5 9104  FinVIcfin6 9105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1o 7560  df-2o 7561  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-fin5 9111  df-fin6 9112
This theorem is referenced by:  fin2so  33396
  Copyright terms: Public domain W3C validator