![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isidom | Structured version Visualization version GIF version |
Description: An integral domain is a commutative domain. (Contributed by Mario Carneiro, 17-Jun-2015.) |
Ref | Expression |
---|---|
isidom | ⊢ (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-idom 19285 | . 2 ⊢ IDomn = (CRing ∩ Domn) | |
2 | 1 | elin2 3801 | 1 ⊢ (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 384 ∈ wcel 1990 CRingccrg 18548 Domncdomn 19280 IDomncidom 19281 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-in 3581 df-idom 19285 |
This theorem is referenced by: fldidom 19305 fiidomfld 19308 znfld 19909 znidomb 19910 recvs 22946 ply1idom 23884 fta1glem1 23925 fta1glem2 23926 fta1g 23927 fta1b 23929 lgsqrlem1 25071 lgsqrlem2 25072 lgsqrlem3 25073 lgsqrlem4 25074 idomrootle 37773 idomodle 37774 proot1mul 37777 proot1hash 37778 |
Copyright terms: Public domain | W3C validator |