Proof of Theorem fta1glem1
| Step | Hyp | Ref
| Expression |
| 1 | | 1cnd 10056 |
. 2
⊢ (𝜑 → 1 ∈
ℂ) |
| 2 | | fta1g.1 |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ IDomn) |
| 3 | | isidom 19304 |
. . . . . . . 8
⊢ (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn)) |
| 4 | 3 | simprbi 480 |
. . . . . . 7
⊢ (𝑅 ∈ IDomn → 𝑅 ∈ Domn) |
| 5 | | domnnzr 19295 |
. . . . . . 7
⊢ (𝑅 ∈ Domn → 𝑅 ∈ NzRing) |
| 6 | 4, 5 | syl 17 |
. . . . . 6
⊢ (𝑅 ∈ IDomn → 𝑅 ∈ NzRing) |
| 7 | 2, 6 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ NzRing) |
| 8 | | nzrring 19261 |
. . . . 5
⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) |
| 9 | 7, 8 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 10 | | fta1g.2 |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| 11 | | fta1g.p |
. . . . . . . 8
⊢ 𝑃 = (Poly1‘𝑅) |
| 12 | | fta1g.b |
. . . . . . . 8
⊢ 𝐵 = (Base‘𝑃) |
| 13 | | fta1glem.k |
. . . . . . . 8
⊢ 𝐾 = (Base‘𝑅) |
| 14 | | fta1glem.x |
. . . . . . . 8
⊢ 𝑋 = (var1‘𝑅) |
| 15 | | fta1glem.m |
. . . . . . . 8
⊢ − =
(-g‘𝑃) |
| 16 | | fta1glem.a |
. . . . . . . 8
⊢ 𝐴 = (algSc‘𝑃) |
| 17 | | fta1glem.g |
. . . . . . . 8
⊢ 𝐺 = (𝑋 − (𝐴‘𝑇)) |
| 18 | | fta1g.o |
. . . . . . . 8
⊢ 𝑂 = (eval1‘𝑅) |
| 19 | 3 | simplbi 476 |
. . . . . . . . 9
⊢ (𝑅 ∈ IDomn → 𝑅 ∈ CRing) |
| 20 | 2, 19 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ CRing) |
| 21 | | fta1glem.5 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑇 ∈ (◡(𝑂‘𝐹) “ {𝑊})) |
| 22 | | eqid 2622 |
. . . . . . . . . . . . 13
⊢ (𝑅 ↑s 𝐾) = (𝑅 ↑s 𝐾) |
| 23 | | eqid 2622 |
. . . . . . . . . . . . 13
⊢
(Base‘(𝑅
↑s 𝐾)) = (Base‘(𝑅 ↑s 𝐾)) |
| 24 | | fvex 6201 |
. . . . . . . . . . . . . . 15
⊢
(Base‘𝑅)
∈ V |
| 25 | 13, 24 | eqeltri 2697 |
. . . . . . . . . . . . . 14
⊢ 𝐾 ∈ V |
| 26 | 25 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐾 ∈ V) |
| 27 | 18, 11, 22, 13 | evl1rhm 19696 |
. . . . . . . . . . . . . . . 16
⊢ (𝑅 ∈ CRing → 𝑂 ∈ (𝑃 RingHom (𝑅 ↑s 𝐾))) |
| 28 | 20, 27 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑂 ∈ (𝑃 RingHom (𝑅 ↑s 𝐾))) |
| 29 | 12, 23 | rhmf 18726 |
. . . . . . . . . . . . . . 15
⊢ (𝑂 ∈ (𝑃 RingHom (𝑅 ↑s 𝐾)) → 𝑂:𝐵⟶(Base‘(𝑅 ↑s 𝐾))) |
| 30 | 28, 29 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑂:𝐵⟶(Base‘(𝑅 ↑s 𝐾))) |
| 31 | 30, 10 | ffvelrnd 6360 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑂‘𝐹) ∈ (Base‘(𝑅 ↑s 𝐾))) |
| 32 | 22, 13, 23, 2, 26, 31 | pwselbas 16149 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑂‘𝐹):𝐾⟶𝐾) |
| 33 | | ffn 6045 |
. . . . . . . . . . . 12
⊢ ((𝑂‘𝐹):𝐾⟶𝐾 → (𝑂‘𝐹) Fn 𝐾) |
| 34 | 32, 33 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑂‘𝐹) Fn 𝐾) |
| 35 | | fniniseg 6338 |
. . . . . . . . . . 11
⊢ ((𝑂‘𝐹) Fn 𝐾 → (𝑇 ∈ (◡(𝑂‘𝐹) “ {𝑊}) ↔ (𝑇 ∈ 𝐾 ∧ ((𝑂‘𝐹)‘𝑇) = 𝑊))) |
| 36 | 34, 35 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑇 ∈ (◡(𝑂‘𝐹) “ {𝑊}) ↔ (𝑇 ∈ 𝐾 ∧ ((𝑂‘𝐹)‘𝑇) = 𝑊))) |
| 37 | 21, 36 | mpbid 222 |
. . . . . . . . 9
⊢ (𝜑 → (𝑇 ∈ 𝐾 ∧ ((𝑂‘𝐹)‘𝑇) = 𝑊)) |
| 38 | 37 | simpld 475 |
. . . . . . . 8
⊢ (𝜑 → 𝑇 ∈ 𝐾) |
| 39 | | eqid 2622 |
. . . . . . . 8
⊢
(Monic1p‘𝑅) = (Monic1p‘𝑅) |
| 40 | | fta1g.d |
. . . . . . . 8
⊢ 𝐷 = ( deg1
‘𝑅) |
| 41 | | fta1g.w |
. . . . . . . 8
⊢ 𝑊 = (0g‘𝑅) |
| 42 | 11, 12, 13, 14, 15, 16, 17, 18, 7, 20, 38, 39, 40, 41 | ply1remlem 23922 |
. . . . . . 7
⊢ (𝜑 → (𝐺 ∈ (Monic1p‘𝑅) ∧ (𝐷‘𝐺) = 1 ∧ (◡(𝑂‘𝐺) “ {𝑊}) = {𝑇})) |
| 43 | 42 | simp1d 1073 |
. . . . . 6
⊢ (𝜑 → 𝐺 ∈ (Monic1p‘𝑅)) |
| 44 | | eqid 2622 |
. . . . . . 7
⊢
(Unic1p‘𝑅) = (Unic1p‘𝑅) |
| 45 | 44, 39 | mon1puc1p 23910 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝐺 ∈
(Monic1p‘𝑅)) → 𝐺 ∈ (Unic1p‘𝑅)) |
| 46 | 9, 43, 45 | syl2anc 693 |
. . . . 5
⊢ (𝜑 → 𝐺 ∈ (Unic1p‘𝑅)) |
| 47 | | eqid 2622 |
. . . . . 6
⊢
(quot1p‘𝑅) = (quot1p‘𝑅) |
| 48 | 47, 11, 12, 44 | q1pcl 23915 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ (Unic1p‘𝑅)) → (𝐹(quot1p‘𝑅)𝐺) ∈ 𝐵) |
| 49 | 9, 10, 46, 48 | syl3anc 1326 |
. . . 4
⊢ (𝜑 → (𝐹(quot1p‘𝑅)𝐺) ∈ 𝐵) |
| 50 | | fta1glem.4 |
. . . . . . . 8
⊢ (𝜑 → (𝐷‘𝐹) = (𝑁 + 1)) |
| 51 | | fta1glem.3 |
. . . . . . . . 9
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
| 52 | | peano2nn0 11333 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℕ0
→ (𝑁 + 1) ∈
ℕ0) |
| 53 | 51, 52 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (𝑁 + 1) ∈
ℕ0) |
| 54 | 50, 53 | eqeltrd 2701 |
. . . . . . 7
⊢ (𝜑 → (𝐷‘𝐹) ∈
ℕ0) |
| 55 | | fta1g.z |
. . . . . . . . 9
⊢ 0 =
(0g‘𝑃) |
| 56 | 40, 11, 55, 12 | deg1nn0clb 23850 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵) → (𝐹 ≠ 0 ↔ (𝐷‘𝐹) ∈
ℕ0)) |
| 57 | 9, 10, 56 | syl2anc 693 |
. . . . . . 7
⊢ (𝜑 → (𝐹 ≠ 0 ↔ (𝐷‘𝐹) ∈
ℕ0)) |
| 58 | 54, 57 | mpbird 247 |
. . . . . 6
⊢ (𝜑 → 𝐹 ≠ 0 ) |
| 59 | 37 | simprd 479 |
. . . . . . . . 9
⊢ (𝜑 → ((𝑂‘𝐹)‘𝑇) = 𝑊) |
| 60 | | eqid 2622 |
. . . . . . . . . 10
⊢
(∥r‘𝑃) = (∥r‘𝑃) |
| 61 | 11, 12, 13, 14, 15, 16, 17, 18, 7, 20, 38, 10, 41, 60 | facth1 23924 |
. . . . . . . . 9
⊢ (𝜑 → (𝐺(∥r‘𝑃)𝐹 ↔ ((𝑂‘𝐹)‘𝑇) = 𝑊)) |
| 62 | 59, 61 | mpbird 247 |
. . . . . . . 8
⊢ (𝜑 → 𝐺(∥r‘𝑃)𝐹) |
| 63 | | eqid 2622 |
. . . . . . . . . 10
⊢
(.r‘𝑃) = (.r‘𝑃) |
| 64 | 11, 60, 12, 44, 63, 47 | dvdsq1p 23920 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ (Unic1p‘𝑅)) → (𝐺(∥r‘𝑃)𝐹 ↔ 𝐹 = ((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺))) |
| 65 | 9, 10, 46, 64 | syl3anc 1326 |
. . . . . . . 8
⊢ (𝜑 → (𝐺(∥r‘𝑃)𝐹 ↔ 𝐹 = ((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺))) |
| 66 | 62, 65 | mpbid 222 |
. . . . . . 7
⊢ (𝜑 → 𝐹 = ((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺)) |
| 67 | 66 | eqcomd 2628 |
. . . . . 6
⊢ (𝜑 → ((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺) = 𝐹) |
| 68 | 11 | ply1crng 19568 |
. . . . . . . . 9
⊢ (𝑅 ∈ CRing → 𝑃 ∈ CRing) |
| 69 | 20, 68 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑃 ∈ CRing) |
| 70 | | crngring 18558 |
. . . . . . . 8
⊢ (𝑃 ∈ CRing → 𝑃 ∈ Ring) |
| 71 | 69, 70 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝑃 ∈ Ring) |
| 72 | 11, 12, 39 | mon1pcl 23904 |
. . . . . . . 8
⊢ (𝐺 ∈
(Monic1p‘𝑅) → 𝐺 ∈ 𝐵) |
| 73 | 43, 72 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐺 ∈ 𝐵) |
| 74 | 12, 63, 55 | ringlz 18587 |
. . . . . . 7
⊢ ((𝑃 ∈ Ring ∧ 𝐺 ∈ 𝐵) → ( 0 (.r‘𝑃)𝐺) = 0 ) |
| 75 | 71, 73, 74 | syl2anc 693 |
. . . . . 6
⊢ (𝜑 → ( 0 (.r‘𝑃)𝐺) = 0 ) |
| 76 | 58, 67, 75 | 3netr4d 2871 |
. . . . 5
⊢ (𝜑 → ((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺) ≠ ( 0 (.r‘𝑃)𝐺)) |
| 77 | | oveq1 6657 |
. . . . . 6
⊢ ((𝐹(quot1p‘𝑅)𝐺) = 0 → ((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺) = ( 0 (.r‘𝑃)𝐺)) |
| 78 | 77 | necon3i 2826 |
. . . . 5
⊢ (((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺) ≠ ( 0 (.r‘𝑃)𝐺) → (𝐹(quot1p‘𝑅)𝐺) ≠ 0 ) |
| 79 | 76, 78 | syl 17 |
. . . 4
⊢ (𝜑 → (𝐹(quot1p‘𝑅)𝐺) ≠ 0 ) |
| 80 | 40, 11, 55, 12 | deg1nn0cl 23848 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝐹(quot1p‘𝑅)𝐺) ∈ 𝐵 ∧ (𝐹(quot1p‘𝑅)𝐺) ≠ 0 ) → (𝐷‘(𝐹(quot1p‘𝑅)𝐺)) ∈
ℕ0) |
| 81 | 9, 49, 79, 80 | syl3anc 1326 |
. . 3
⊢ (𝜑 → (𝐷‘(𝐹(quot1p‘𝑅)𝐺)) ∈
ℕ0) |
| 82 | 81 | nn0cnd 11353 |
. 2
⊢ (𝜑 → (𝐷‘(𝐹(quot1p‘𝑅)𝐺)) ∈ ℂ) |
| 83 | 51 | nn0cnd 11353 |
. 2
⊢ (𝜑 → 𝑁 ∈ ℂ) |
| 84 | 12, 63 | crngcom 18562 |
. . . . . . 7
⊢ ((𝑃 ∈ CRing ∧ (𝐹(quot1p‘𝑅)𝐺) ∈ 𝐵 ∧ 𝐺 ∈ 𝐵) → ((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺) = (𝐺(.r‘𝑃)(𝐹(quot1p‘𝑅)𝐺))) |
| 85 | 69, 49, 73, 84 | syl3anc 1326 |
. . . . . 6
⊢ (𝜑 → ((𝐹(quot1p‘𝑅)𝐺)(.r‘𝑃)𝐺) = (𝐺(.r‘𝑃)(𝐹(quot1p‘𝑅)𝐺))) |
| 86 | 66, 85 | eqtrd 2656 |
. . . . 5
⊢ (𝜑 → 𝐹 = (𝐺(.r‘𝑃)(𝐹(quot1p‘𝑅)𝐺))) |
| 87 | 86 | fveq2d 6195 |
. . . 4
⊢ (𝜑 → (𝐷‘𝐹) = (𝐷‘(𝐺(.r‘𝑃)(𝐹(quot1p‘𝑅)𝐺)))) |
| 88 | | eqid 2622 |
. . . . 5
⊢
(RLReg‘𝑅) =
(RLReg‘𝑅) |
| 89 | 42 | simp2d 1074 |
. . . . . . 7
⊢ (𝜑 → (𝐷‘𝐺) = 1) |
| 90 | | 1nn0 11308 |
. . . . . . 7
⊢ 1 ∈
ℕ0 |
| 91 | 89, 90 | syl6eqel 2709 |
. . . . . 6
⊢ (𝜑 → (𝐷‘𝐺) ∈
ℕ0) |
| 92 | 40, 11, 55, 12 | deg1nn0clb 23850 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝐺 ∈ 𝐵) → (𝐺 ≠ 0 ↔ (𝐷‘𝐺) ∈
ℕ0)) |
| 93 | 9, 73, 92 | syl2anc 693 |
. . . . . 6
⊢ (𝜑 → (𝐺 ≠ 0 ↔ (𝐷‘𝐺) ∈
ℕ0)) |
| 94 | 91, 93 | mpbird 247 |
. . . . 5
⊢ (𝜑 → 𝐺 ≠ 0 ) |
| 95 | | eqid 2622 |
. . . . . . . 8
⊢
(Unit‘𝑅) =
(Unit‘𝑅) |
| 96 | 88, 95 | unitrrg 19293 |
. . . . . . 7
⊢ (𝑅 ∈ Ring →
(Unit‘𝑅) ⊆
(RLReg‘𝑅)) |
| 97 | 9, 96 | syl 17 |
. . . . . 6
⊢ (𝜑 → (Unit‘𝑅) ⊆ (RLReg‘𝑅)) |
| 98 | 40, 95, 44 | uc1pldg 23908 |
. . . . . . 7
⊢ (𝐺 ∈
(Unic1p‘𝑅)
→ ((coe1‘𝐺)‘(𝐷‘𝐺)) ∈ (Unit‘𝑅)) |
| 99 | 46, 98 | syl 17 |
. . . . . 6
⊢ (𝜑 →
((coe1‘𝐺)‘(𝐷‘𝐺)) ∈ (Unit‘𝑅)) |
| 100 | 97, 99 | sseldd 3604 |
. . . . 5
⊢ (𝜑 →
((coe1‘𝐺)‘(𝐷‘𝐺)) ∈ (RLReg‘𝑅)) |
| 101 | 40, 11, 88, 12, 63, 55, 9, 73, 94, 100, 49, 79 | deg1mul2 23874 |
. . . 4
⊢ (𝜑 → (𝐷‘(𝐺(.r‘𝑃)(𝐹(quot1p‘𝑅)𝐺))) = ((𝐷‘𝐺) + (𝐷‘(𝐹(quot1p‘𝑅)𝐺)))) |
| 102 | 87, 50, 101 | 3eqtr3d 2664 |
. . 3
⊢ (𝜑 → (𝑁 + 1) = ((𝐷‘𝐺) + (𝐷‘(𝐹(quot1p‘𝑅)𝐺)))) |
| 103 | | ax-1cn 9994 |
. . . 4
⊢ 1 ∈
ℂ |
| 104 | | addcom 10222 |
. . . 4
⊢ ((𝑁 ∈ ℂ ∧ 1 ∈
ℂ) → (𝑁 + 1) =
(1 + 𝑁)) |
| 105 | 83, 103, 104 | sylancl 694 |
. . 3
⊢ (𝜑 → (𝑁 + 1) = (1 + 𝑁)) |
| 106 | 89 | oveq1d 6665 |
. . 3
⊢ (𝜑 → ((𝐷‘𝐺) + (𝐷‘(𝐹(quot1p‘𝑅)𝐺))) = (1 + (𝐷‘(𝐹(quot1p‘𝑅)𝐺)))) |
| 107 | 102, 105,
106 | 3eqtr3rd 2665 |
. 2
⊢ (𝜑 → (1 + (𝐷‘(𝐹(quot1p‘𝑅)𝐺))) = (1 + 𝑁)) |
| 108 | 1, 82, 83, 107 | addcanad 10241 |
1
⊢ (𝜑 → (𝐷‘(𝐹(quot1p‘𝑅)𝐺)) = 𝑁) |