| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2622 |
. 2
⊢ (𝐷‘𝐹) = (𝐷‘𝐹) |
| 2 | | fta1g.2 |
. . 3
⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| 3 | | fta1g.1 |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ IDomn) |
| 4 | | isidom 19304 |
. . . . . . 7
⊢ (𝑅 ∈ IDomn ↔ (𝑅 ∈ CRing ∧ 𝑅 ∈ Domn)) |
| 5 | 4 | simplbi 476 |
. . . . . 6
⊢ (𝑅 ∈ IDomn → 𝑅 ∈ CRing) |
| 6 | | crngring 18558 |
. . . . . 6
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
| 7 | 3, 5, 6 | 3syl 18 |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 8 | | fta1g.3 |
. . . . 5
⊢ (𝜑 → 𝐹 ≠ 0 ) |
| 9 | | fta1g.d |
. . . . . 6
⊢ 𝐷 = ( deg1
‘𝑅) |
| 10 | | fta1g.p |
. . . . . 6
⊢ 𝑃 = (Poly1‘𝑅) |
| 11 | | fta1g.z |
. . . . . 6
⊢ 0 =
(0g‘𝑃) |
| 12 | | fta1g.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝑃) |
| 13 | 9, 10, 11, 12 | deg1nn0cl 23848 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐹 ≠ 0 ) → (𝐷‘𝐹) ∈
ℕ0) |
| 14 | 7, 2, 8, 13 | syl3anc 1326 |
. . . 4
⊢ (𝜑 → (𝐷‘𝐹) ∈
ℕ0) |
| 15 | | eqeq2 2633 |
. . . . . . . 8
⊢ (𝑥 = 0 → ((𝐷‘𝑓) = 𝑥 ↔ (𝐷‘𝑓) = 0)) |
| 16 | 15 | imbi1d 331 |
. . . . . . 7
⊢ (𝑥 = 0 → (((𝐷‘𝑓) = 𝑥 → (#‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓)) ↔ ((𝐷‘𝑓) = 0 → (#‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓)))) |
| 17 | 16 | ralbidv 2986 |
. . . . . 6
⊢ (𝑥 = 0 → (∀𝑓 ∈ 𝐵 ((𝐷‘𝑓) = 𝑥 → (#‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓)) ↔ ∀𝑓 ∈ 𝐵 ((𝐷‘𝑓) = 0 → (#‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓)))) |
| 18 | 17 | imbi2d 330 |
. . . . 5
⊢ (𝑥 = 0 → ((𝑅 ∈ IDomn → ∀𝑓 ∈ 𝐵 ((𝐷‘𝑓) = 𝑥 → (#‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓))) ↔ (𝑅 ∈ IDomn → ∀𝑓 ∈ 𝐵 ((𝐷‘𝑓) = 0 → (#‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓))))) |
| 19 | | eqeq2 2633 |
. . . . . . . 8
⊢ (𝑥 = 𝑑 → ((𝐷‘𝑓) = 𝑥 ↔ (𝐷‘𝑓) = 𝑑)) |
| 20 | 19 | imbi1d 331 |
. . . . . . 7
⊢ (𝑥 = 𝑑 → (((𝐷‘𝑓) = 𝑥 → (#‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓)) ↔ ((𝐷‘𝑓) = 𝑑 → (#‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓)))) |
| 21 | 20 | ralbidv 2986 |
. . . . . 6
⊢ (𝑥 = 𝑑 → (∀𝑓 ∈ 𝐵 ((𝐷‘𝑓) = 𝑥 → (#‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓)) ↔ ∀𝑓 ∈ 𝐵 ((𝐷‘𝑓) = 𝑑 → (#‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓)))) |
| 22 | 21 | imbi2d 330 |
. . . . 5
⊢ (𝑥 = 𝑑 → ((𝑅 ∈ IDomn → ∀𝑓 ∈ 𝐵 ((𝐷‘𝑓) = 𝑥 → (#‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓))) ↔ (𝑅 ∈ IDomn → ∀𝑓 ∈ 𝐵 ((𝐷‘𝑓) = 𝑑 → (#‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓))))) |
| 23 | | eqeq2 2633 |
. . . . . . . 8
⊢ (𝑥 = (𝑑 + 1) → ((𝐷‘𝑓) = 𝑥 ↔ (𝐷‘𝑓) = (𝑑 + 1))) |
| 24 | 23 | imbi1d 331 |
. . . . . . 7
⊢ (𝑥 = (𝑑 + 1) → (((𝐷‘𝑓) = 𝑥 → (#‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓)) ↔ ((𝐷‘𝑓) = (𝑑 + 1) → (#‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓)))) |
| 25 | 24 | ralbidv 2986 |
. . . . . 6
⊢ (𝑥 = (𝑑 + 1) → (∀𝑓 ∈ 𝐵 ((𝐷‘𝑓) = 𝑥 → (#‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓)) ↔ ∀𝑓 ∈ 𝐵 ((𝐷‘𝑓) = (𝑑 + 1) → (#‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓)))) |
| 26 | 25 | imbi2d 330 |
. . . . 5
⊢ (𝑥 = (𝑑 + 1) → ((𝑅 ∈ IDomn → ∀𝑓 ∈ 𝐵 ((𝐷‘𝑓) = 𝑥 → (#‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓))) ↔ (𝑅 ∈ IDomn → ∀𝑓 ∈ 𝐵 ((𝐷‘𝑓) = (𝑑 + 1) → (#‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓))))) |
| 27 | | eqeq2 2633 |
. . . . . . . 8
⊢ (𝑥 = (𝐷‘𝐹) → ((𝐷‘𝑓) = 𝑥 ↔ (𝐷‘𝑓) = (𝐷‘𝐹))) |
| 28 | 27 | imbi1d 331 |
. . . . . . 7
⊢ (𝑥 = (𝐷‘𝐹) → (((𝐷‘𝑓) = 𝑥 → (#‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓)) ↔ ((𝐷‘𝑓) = (𝐷‘𝐹) → (#‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓)))) |
| 29 | 28 | ralbidv 2986 |
. . . . . 6
⊢ (𝑥 = (𝐷‘𝐹) → (∀𝑓 ∈ 𝐵 ((𝐷‘𝑓) = 𝑥 → (#‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓)) ↔ ∀𝑓 ∈ 𝐵 ((𝐷‘𝑓) = (𝐷‘𝐹) → (#‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓)))) |
| 30 | 29 | imbi2d 330 |
. . . . 5
⊢ (𝑥 = (𝐷‘𝐹) → ((𝑅 ∈ IDomn → ∀𝑓 ∈ 𝐵 ((𝐷‘𝑓) = 𝑥 → (#‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓))) ↔ (𝑅 ∈ IDomn → ∀𝑓 ∈ 𝐵 ((𝐷‘𝑓) = (𝐷‘𝐹) → (#‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓))))) |
| 31 | | simprr 796 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ IDomn ∧ (𝑓 ∈ 𝐵 ∧ (𝐷‘𝑓) = 0)) → (𝐷‘𝑓) = 0) |
| 32 | | 0nn0 11307 |
. . . . . . . . . . . . . 14
⊢ 0 ∈
ℕ0 |
| 33 | 31, 32 | syl6eqel 2709 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ IDomn ∧ (𝑓 ∈ 𝐵 ∧ (𝐷‘𝑓) = 0)) → (𝐷‘𝑓) ∈
ℕ0) |
| 34 | 5, 6 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ IDomn → 𝑅 ∈ Ring) |
| 35 | | simpl 473 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 ∈ 𝐵 ∧ (𝐷‘𝑓) = 0) → 𝑓 ∈ 𝐵) |
| 36 | 9, 10, 11, 12 | deg1nn0clb 23850 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ Ring ∧ 𝑓 ∈ 𝐵) → (𝑓 ≠ 0 ↔ (𝐷‘𝑓) ∈
ℕ0)) |
| 37 | 34, 35, 36 | syl2an 494 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ IDomn ∧ (𝑓 ∈ 𝐵 ∧ (𝐷‘𝑓) = 0)) → (𝑓 ≠ 0 ↔ (𝐷‘𝑓) ∈
ℕ0)) |
| 38 | 33, 37 | mpbird 247 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ IDomn ∧ (𝑓 ∈ 𝐵 ∧ (𝐷‘𝑓) = 0)) → 𝑓 ≠ 0 ) |
| 39 | | simplrr 801 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑅 ∈ IDomn ∧ (𝑓 ∈ 𝐵 ∧ (𝐷‘𝑓) = 0)) ∧ 𝑥 ∈ (◡(𝑂‘𝑓) “ {𝑊})) → (𝐷‘𝑓) = 0) |
| 40 | | 0le0 11110 |
. . . . . . . . . . . . . . . . 17
⊢ 0 ≤
0 |
| 41 | 39, 40 | syl6eqbr 4692 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑅 ∈ IDomn ∧ (𝑓 ∈ 𝐵 ∧ (𝐷‘𝑓) = 0)) ∧ 𝑥 ∈ (◡(𝑂‘𝑓) “ {𝑊})) → (𝐷‘𝑓) ≤ 0) |
| 42 | 34 | ad2antrr 762 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑅 ∈ IDomn ∧ (𝑓 ∈ 𝐵 ∧ (𝐷‘𝑓) = 0)) ∧ 𝑥 ∈ (◡(𝑂‘𝑓) “ {𝑊})) → 𝑅 ∈ Ring) |
| 43 | | simplrl 800 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑅 ∈ IDomn ∧ (𝑓 ∈ 𝐵 ∧ (𝐷‘𝑓) = 0)) ∧ 𝑥 ∈ (◡(𝑂‘𝑓) “ {𝑊})) → 𝑓 ∈ 𝐵) |
| 44 | | eqid 2622 |
. . . . . . . . . . . . . . . . . 18
⊢
(algSc‘𝑃) =
(algSc‘𝑃) |
| 45 | 9, 10, 12, 44 | deg1le0 23871 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑅 ∈ Ring ∧ 𝑓 ∈ 𝐵) → ((𝐷‘𝑓) ≤ 0 ↔ 𝑓 = ((algSc‘𝑃)‘((coe1‘𝑓)‘0)))) |
| 46 | 42, 43, 45 | syl2anc 693 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑅 ∈ IDomn ∧ (𝑓 ∈ 𝐵 ∧ (𝐷‘𝑓) = 0)) ∧ 𝑥 ∈ (◡(𝑂‘𝑓) “ {𝑊})) → ((𝐷‘𝑓) ≤ 0 ↔ 𝑓 = ((algSc‘𝑃)‘((coe1‘𝑓)‘0)))) |
| 47 | 41, 46 | mpbid 222 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ IDomn ∧ (𝑓 ∈ 𝐵 ∧ (𝐷‘𝑓) = 0)) ∧ 𝑥 ∈ (◡(𝑂‘𝑓) “ {𝑊})) → 𝑓 = ((algSc‘𝑃)‘((coe1‘𝑓)‘0))) |
| 48 | 47 | fveq2d 6195 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑅 ∈ IDomn ∧ (𝑓 ∈ 𝐵 ∧ (𝐷‘𝑓) = 0)) ∧ 𝑥 ∈ (◡(𝑂‘𝑓) “ {𝑊})) → (𝑂‘𝑓) = (𝑂‘((algSc‘𝑃)‘((coe1‘𝑓)‘0)))) |
| 49 | 5 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑅 ∈ IDomn ∧ (𝑓 ∈ 𝐵 ∧ (𝐷‘𝑓) = 0)) → 𝑅 ∈ CRing) |
| 50 | 49 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑅 ∈ IDomn ∧ (𝑓 ∈ 𝐵 ∧ (𝐷‘𝑓) = 0)) ∧ 𝑥 ∈ (◡(𝑂‘𝑓) “ {𝑊})) → 𝑅 ∈ CRing) |
| 51 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(coe1‘𝑓) = (coe1‘𝑓) |
| 52 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 53 | 51, 12, 10, 52 | coe1f 19581 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑓 ∈ 𝐵 → (coe1‘𝑓):ℕ0⟶(Base‘𝑅)) |
| 54 | 43, 53 | syl 17 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝑅 ∈ IDomn ∧ (𝑓 ∈ 𝐵 ∧ (𝐷‘𝑓) = 0)) ∧ 𝑥 ∈ (◡(𝑂‘𝑓) “ {𝑊})) → (coe1‘𝑓):ℕ0⟶(Base‘𝑅)) |
| 55 | | ffvelrn 6357 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((coe1‘𝑓):ℕ0⟶(Base‘𝑅) ∧ 0 ∈
ℕ0) → ((coe1‘𝑓)‘0) ∈ (Base‘𝑅)) |
| 56 | 54, 32, 55 | sylancl 694 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝑅 ∈ IDomn ∧ (𝑓 ∈ 𝐵 ∧ (𝐷‘𝑓) = 0)) ∧ 𝑥 ∈ (◡(𝑂‘𝑓) “ {𝑊})) → ((coe1‘𝑓)‘0) ∈
(Base‘𝑅)) |
| 57 | | fta1g.o |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑂 = (eval1‘𝑅) |
| 58 | 57, 10, 52, 44 | evl1sca 19698 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑅 ∈ CRing ∧
((coe1‘𝑓)‘0) ∈ (Base‘𝑅)) → (𝑂‘((algSc‘𝑃)‘((coe1‘𝑓)‘0))) =
((Base‘𝑅) ×
{((coe1‘𝑓)‘0)})) |
| 59 | 50, 56, 58 | syl2anc 693 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝑅 ∈ IDomn ∧ (𝑓 ∈ 𝐵 ∧ (𝐷‘𝑓) = 0)) ∧ 𝑥 ∈ (◡(𝑂‘𝑓) “ {𝑊})) → (𝑂‘((algSc‘𝑃)‘((coe1‘𝑓)‘0))) =
((Base‘𝑅) ×
{((coe1‘𝑓)‘0)})) |
| 60 | 48, 59 | eqtrd 2656 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑅 ∈ IDomn ∧ (𝑓 ∈ 𝐵 ∧ (𝐷‘𝑓) = 0)) ∧ 𝑥 ∈ (◡(𝑂‘𝑓) “ {𝑊})) → (𝑂‘𝑓) = ((Base‘𝑅) × {((coe1‘𝑓)‘0)})) |
| 61 | 60 | fveq1d 6193 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑅 ∈ IDomn ∧ (𝑓 ∈ 𝐵 ∧ (𝐷‘𝑓) = 0)) ∧ 𝑥 ∈ (◡(𝑂‘𝑓) “ {𝑊})) → ((𝑂‘𝑓)‘𝑥) = (((Base‘𝑅) × {((coe1‘𝑓)‘0)})‘𝑥)) |
| 62 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑅 ↑s
(Base‘𝑅)) = (𝑅 ↑s
(Base‘𝑅)) |
| 63 | | eqid 2622 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(Base‘(𝑅
↑s (Base‘𝑅))) = (Base‘(𝑅 ↑s (Base‘𝑅))) |
| 64 | | simpl 473 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑅 ∈ IDomn ∧ (𝑓 ∈ 𝐵 ∧ (𝐷‘𝑓) = 0)) → 𝑅 ∈ IDomn) |
| 65 | | fvexd 6203 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑅 ∈ IDomn ∧ (𝑓 ∈ 𝐵 ∧ (𝐷‘𝑓) = 0)) → (Base‘𝑅) ∈ V) |
| 66 | 57, 10, 62, 52 | evl1rhm 19696 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑅 ∈ CRing → 𝑂 ∈ (𝑃 RingHom (𝑅 ↑s (Base‘𝑅)))) |
| 67 | 12, 63 | rhmf 18726 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑂 ∈ (𝑃 RingHom (𝑅 ↑s (Base‘𝑅))) → 𝑂:𝐵⟶(Base‘(𝑅 ↑s (Base‘𝑅)))) |
| 68 | 49, 66, 67 | 3syl 18 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑅 ∈ IDomn ∧ (𝑓 ∈ 𝐵 ∧ (𝐷‘𝑓) = 0)) → 𝑂:𝐵⟶(Base‘(𝑅 ↑s (Base‘𝑅)))) |
| 69 | | simprl 794 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑅 ∈ IDomn ∧ (𝑓 ∈ 𝐵 ∧ (𝐷‘𝑓) = 0)) → 𝑓 ∈ 𝐵) |
| 70 | 68, 69 | ffvelrnd 6360 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑅 ∈ IDomn ∧ (𝑓 ∈ 𝐵 ∧ (𝐷‘𝑓) = 0)) → (𝑂‘𝑓) ∈ (Base‘(𝑅 ↑s (Base‘𝑅)))) |
| 71 | 62, 52, 63, 64, 65, 70 | pwselbas 16149 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑅 ∈ IDomn ∧ (𝑓 ∈ 𝐵 ∧ (𝐷‘𝑓) = 0)) → (𝑂‘𝑓):(Base‘𝑅)⟶(Base‘𝑅)) |
| 72 | | ffn 6045 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑂‘𝑓):(Base‘𝑅)⟶(Base‘𝑅) → (𝑂‘𝑓) Fn (Base‘𝑅)) |
| 73 | | fniniseg 6338 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑂‘𝑓) Fn (Base‘𝑅) → (𝑥 ∈ (◡(𝑂‘𝑓) “ {𝑊}) ↔ (𝑥 ∈ (Base‘𝑅) ∧ ((𝑂‘𝑓)‘𝑥) = 𝑊))) |
| 74 | 71, 72, 73 | 3syl 18 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑅 ∈ IDomn ∧ (𝑓 ∈ 𝐵 ∧ (𝐷‘𝑓) = 0)) → (𝑥 ∈ (◡(𝑂‘𝑓) “ {𝑊}) ↔ (𝑥 ∈ (Base‘𝑅) ∧ ((𝑂‘𝑓)‘𝑥) = 𝑊))) |
| 75 | 74 | simplbda 654 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑅 ∈ IDomn ∧ (𝑓 ∈ 𝐵 ∧ (𝐷‘𝑓) = 0)) ∧ 𝑥 ∈ (◡(𝑂‘𝑓) “ {𝑊})) → ((𝑂‘𝑓)‘𝑥) = 𝑊) |
| 76 | 74 | simprbda 653 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑅 ∈ IDomn ∧ (𝑓 ∈ 𝐵 ∧ (𝐷‘𝑓) = 0)) ∧ 𝑥 ∈ (◡(𝑂‘𝑓) “ {𝑊})) → 𝑥 ∈ (Base‘𝑅)) |
| 77 | | fvex 6201 |
. . . . . . . . . . . . . . . . . . 19
⊢
((coe1‘𝑓)‘0) ∈ V |
| 78 | 77 | fvconst2 6469 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 ∈ (Base‘𝑅) → (((Base‘𝑅) ×
{((coe1‘𝑓)‘0)})‘𝑥) = ((coe1‘𝑓)‘0)) |
| 79 | 76, 78 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑅 ∈ IDomn ∧ (𝑓 ∈ 𝐵 ∧ (𝐷‘𝑓) = 0)) ∧ 𝑥 ∈ (◡(𝑂‘𝑓) “ {𝑊})) → (((Base‘𝑅) × {((coe1‘𝑓)‘0)})‘𝑥) =
((coe1‘𝑓)‘0)) |
| 80 | 61, 75, 79 | 3eqtr3rd 2665 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑅 ∈ IDomn ∧ (𝑓 ∈ 𝐵 ∧ (𝐷‘𝑓) = 0)) ∧ 𝑥 ∈ (◡(𝑂‘𝑓) “ {𝑊})) → ((coe1‘𝑓)‘0) = 𝑊) |
| 81 | 80 | fveq2d 6195 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ IDomn ∧ (𝑓 ∈ 𝐵 ∧ (𝐷‘𝑓) = 0)) ∧ 𝑥 ∈ (◡(𝑂‘𝑓) “ {𝑊})) → ((algSc‘𝑃)‘((coe1‘𝑓)‘0)) =
((algSc‘𝑃)‘𝑊)) |
| 82 | | fta1g.w |
. . . . . . . . . . . . . . . . 17
⊢ 𝑊 = (0g‘𝑅) |
| 83 | 10, 44, 82, 11 | ply1scl0 19660 |
. . . . . . . . . . . . . . . 16
⊢ (𝑅 ∈ Ring →
((algSc‘𝑃)‘𝑊) = 0 ) |
| 84 | 42, 83 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ IDomn ∧ (𝑓 ∈ 𝐵 ∧ (𝐷‘𝑓) = 0)) ∧ 𝑥 ∈ (◡(𝑂‘𝑓) “ {𝑊})) → ((algSc‘𝑃)‘𝑊) = 0 ) |
| 85 | 47, 81, 84 | 3eqtrd 2660 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ IDomn ∧ (𝑓 ∈ 𝐵 ∧ (𝐷‘𝑓) = 0)) ∧ 𝑥 ∈ (◡(𝑂‘𝑓) “ {𝑊})) → 𝑓 = 0 ) |
| 86 | 85 | ex 450 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ IDomn ∧ (𝑓 ∈ 𝐵 ∧ (𝐷‘𝑓) = 0)) → (𝑥 ∈ (◡(𝑂‘𝑓) “ {𝑊}) → 𝑓 = 0 )) |
| 87 | 86 | necon3ad 2807 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ IDomn ∧ (𝑓 ∈ 𝐵 ∧ (𝐷‘𝑓) = 0)) → (𝑓 ≠ 0 → ¬ 𝑥 ∈ (◡(𝑂‘𝑓) “ {𝑊}))) |
| 88 | 38, 87 | mpd 15 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ IDomn ∧ (𝑓 ∈ 𝐵 ∧ (𝐷‘𝑓) = 0)) → ¬ 𝑥 ∈ (◡(𝑂‘𝑓) “ {𝑊})) |
| 89 | 88 | eq0rdv 3979 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ IDomn ∧ (𝑓 ∈ 𝐵 ∧ (𝐷‘𝑓) = 0)) → (◡(𝑂‘𝑓) “ {𝑊}) = ∅) |
| 90 | 89 | fveq2d 6195 |
. . . . . . . . 9
⊢ ((𝑅 ∈ IDomn ∧ (𝑓 ∈ 𝐵 ∧ (𝐷‘𝑓) = 0)) → (#‘(◡(𝑂‘𝑓) “ {𝑊})) = (#‘∅)) |
| 91 | | hash0 13158 |
. . . . . . . . 9
⊢
(#‘∅) = 0 |
| 92 | 90, 91 | syl6eq 2672 |
. . . . . . . 8
⊢ ((𝑅 ∈ IDomn ∧ (𝑓 ∈ 𝐵 ∧ (𝐷‘𝑓) = 0)) → (#‘(◡(𝑂‘𝑓) “ {𝑊})) = 0) |
| 93 | 40, 31 | syl5breqr 4691 |
. . . . . . . 8
⊢ ((𝑅 ∈ IDomn ∧ (𝑓 ∈ 𝐵 ∧ (𝐷‘𝑓) = 0)) → 0 ≤ (𝐷‘𝑓)) |
| 94 | 92, 93 | eqbrtrd 4675 |
. . . . . . 7
⊢ ((𝑅 ∈ IDomn ∧ (𝑓 ∈ 𝐵 ∧ (𝐷‘𝑓) = 0)) → (#‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓)) |
| 95 | 94 | expr 643 |
. . . . . 6
⊢ ((𝑅 ∈ IDomn ∧ 𝑓 ∈ 𝐵) → ((𝐷‘𝑓) = 0 → (#‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓))) |
| 96 | 95 | ralrimiva 2966 |
. . . . 5
⊢ (𝑅 ∈ IDomn →
∀𝑓 ∈ 𝐵 ((𝐷‘𝑓) = 0 → (#‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓))) |
| 97 | | fveq2 6191 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝑔 → (𝐷‘𝑓) = (𝐷‘𝑔)) |
| 98 | 97 | eqeq1d 2624 |
. . . . . . . . . 10
⊢ (𝑓 = 𝑔 → ((𝐷‘𝑓) = 𝑑 ↔ (𝐷‘𝑔) = 𝑑)) |
| 99 | | fveq2 6191 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = 𝑔 → (𝑂‘𝑓) = (𝑂‘𝑔)) |
| 100 | 99 | cnveqd 5298 |
. . . . . . . . . . . . 13
⊢ (𝑓 = 𝑔 → ◡(𝑂‘𝑓) = ◡(𝑂‘𝑔)) |
| 101 | 100 | imaeq1d 5465 |
. . . . . . . . . . . 12
⊢ (𝑓 = 𝑔 → (◡(𝑂‘𝑓) “ {𝑊}) = (◡(𝑂‘𝑔) “ {𝑊})) |
| 102 | 101 | fveq2d 6195 |
. . . . . . . . . . 11
⊢ (𝑓 = 𝑔 → (#‘(◡(𝑂‘𝑓) “ {𝑊})) = (#‘(◡(𝑂‘𝑔) “ {𝑊}))) |
| 103 | 102, 97 | breq12d 4666 |
. . . . . . . . . 10
⊢ (𝑓 = 𝑔 → ((#‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓) ↔ (#‘(◡(𝑂‘𝑔) “ {𝑊})) ≤ (𝐷‘𝑔))) |
| 104 | 98, 103 | imbi12d 334 |
. . . . . . . . 9
⊢ (𝑓 = 𝑔 → (((𝐷‘𝑓) = 𝑑 → (#‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓)) ↔ ((𝐷‘𝑔) = 𝑑 → (#‘(◡(𝑂‘𝑔) “ {𝑊})) ≤ (𝐷‘𝑔)))) |
| 105 | 104 | cbvralv 3171 |
. . . . . . . 8
⊢
(∀𝑓 ∈
𝐵 ((𝐷‘𝑓) = 𝑑 → (#‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓)) ↔ ∀𝑔 ∈ 𝐵 ((𝐷‘𝑔) = 𝑑 → (#‘(◡(𝑂‘𝑔) “ {𝑊})) ≤ (𝐷‘𝑔))) |
| 106 | | simprr 796 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0)
∧ (𝑓 ∈ 𝐵 ∧ (𝐷‘𝑓) = (𝑑 + 1))) → (𝐷‘𝑓) = (𝑑 + 1)) |
| 107 | | peano2nn0 11333 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑑 ∈ ℕ0
→ (𝑑 + 1) ∈
ℕ0) |
| 108 | 107 | ad2antlr 763 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0)
∧ (𝑓 ∈ 𝐵 ∧ (𝐷‘𝑓) = (𝑑 + 1))) → (𝑑 + 1) ∈
ℕ0) |
| 109 | 106, 108 | eqeltrd 2701 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0)
∧ (𝑓 ∈ 𝐵 ∧ (𝐷‘𝑓) = (𝑑 + 1))) → (𝐷‘𝑓) ∈
ℕ0) |
| 110 | 109 | nn0ge0d 11354 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0)
∧ (𝑓 ∈ 𝐵 ∧ (𝐷‘𝑓) = (𝑑 + 1))) → 0 ≤ (𝐷‘𝑓)) |
| 111 | | fveq2 6191 |
. . . . . . . . . . . . . . . 16
⊢ ((◡(𝑂‘𝑓) “ {𝑊}) = ∅ → (#‘(◡(𝑂‘𝑓) “ {𝑊})) = (#‘∅)) |
| 112 | 111, 91 | syl6eq 2672 |
. . . . . . . . . . . . . . 15
⊢ ((◡(𝑂‘𝑓) “ {𝑊}) = ∅ → (#‘(◡(𝑂‘𝑓) “ {𝑊})) = 0) |
| 113 | 112 | breq1d 4663 |
. . . . . . . . . . . . . 14
⊢ ((◡(𝑂‘𝑓) “ {𝑊}) = ∅ → ((#‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓) ↔ 0 ≤ (𝐷‘𝑓))) |
| 114 | 110, 113 | syl5ibrcom 237 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0)
∧ (𝑓 ∈ 𝐵 ∧ (𝐷‘𝑓) = (𝑑 + 1))) → ((◡(𝑂‘𝑓) “ {𝑊}) = ∅ → (#‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓))) |
| 115 | 114 | a1dd 50 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0)
∧ (𝑓 ∈ 𝐵 ∧ (𝐷‘𝑓) = (𝑑 + 1))) → ((◡(𝑂‘𝑓) “ {𝑊}) = ∅ → (∀𝑔 ∈ 𝐵 ((𝐷‘𝑔) = 𝑑 → (#‘(◡(𝑂‘𝑔) “ {𝑊})) ≤ (𝐷‘𝑔)) → (#‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓)))) |
| 116 | | n0 3931 |
. . . . . . . . . . . . 13
⊢ ((◡(𝑂‘𝑓) “ {𝑊}) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (◡(𝑂‘𝑓) “ {𝑊})) |
| 117 | | simplll 798 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0)
∧ (𝑓 ∈ 𝐵 ∧ (𝐷‘𝑓) = (𝑑 + 1))) ∧ (𝑥 ∈ (◡(𝑂‘𝑓) “ {𝑊}) ∧ ∀𝑔 ∈ 𝐵 ((𝐷‘𝑔) = 𝑑 → (#‘(◡(𝑂‘𝑔) “ {𝑊})) ≤ (𝐷‘𝑔)))) → 𝑅 ∈ IDomn) |
| 118 | | simplrl 800 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0)
∧ (𝑓 ∈ 𝐵 ∧ (𝐷‘𝑓) = (𝑑 + 1))) ∧ (𝑥 ∈ (◡(𝑂‘𝑓) “ {𝑊}) ∧ ∀𝑔 ∈ 𝐵 ((𝐷‘𝑔) = 𝑑 → (#‘(◡(𝑂‘𝑔) “ {𝑊})) ≤ (𝐷‘𝑔)))) → 𝑓 ∈ 𝐵) |
| 119 | | eqid 2622 |
. . . . . . . . . . . . . . . 16
⊢
(var1‘𝑅) = (var1‘𝑅) |
| 120 | | eqid 2622 |
. . . . . . . . . . . . . . . 16
⊢
(-g‘𝑃) = (-g‘𝑃) |
| 121 | | eqid 2622 |
. . . . . . . . . . . . . . . 16
⊢
((var1‘𝑅)(-g‘𝑃)((algSc‘𝑃)‘𝑥)) = ((var1‘𝑅)(-g‘𝑃)((algSc‘𝑃)‘𝑥)) |
| 122 | | simpllr 799 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0)
∧ (𝑓 ∈ 𝐵 ∧ (𝐷‘𝑓) = (𝑑 + 1))) ∧ (𝑥 ∈ (◡(𝑂‘𝑓) “ {𝑊}) ∧ ∀𝑔 ∈ 𝐵 ((𝐷‘𝑔) = 𝑑 → (#‘(◡(𝑂‘𝑔) “ {𝑊})) ≤ (𝐷‘𝑔)))) → 𝑑 ∈ ℕ0) |
| 123 | | simplrr 801 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0)
∧ (𝑓 ∈ 𝐵 ∧ (𝐷‘𝑓) = (𝑑 + 1))) ∧ (𝑥 ∈ (◡(𝑂‘𝑓) “ {𝑊}) ∧ ∀𝑔 ∈ 𝐵 ((𝐷‘𝑔) = 𝑑 → (#‘(◡(𝑂‘𝑔) “ {𝑊})) ≤ (𝐷‘𝑔)))) → (𝐷‘𝑓) = (𝑑 + 1)) |
| 124 | | simprl 794 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0)
∧ (𝑓 ∈ 𝐵 ∧ (𝐷‘𝑓) = (𝑑 + 1))) ∧ (𝑥 ∈ (◡(𝑂‘𝑓) “ {𝑊}) ∧ ∀𝑔 ∈ 𝐵 ((𝐷‘𝑔) = 𝑑 → (#‘(◡(𝑂‘𝑔) “ {𝑊})) ≤ (𝐷‘𝑔)))) → 𝑥 ∈ (◡(𝑂‘𝑓) “ {𝑊})) |
| 125 | | simprr 796 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0)
∧ (𝑓 ∈ 𝐵 ∧ (𝐷‘𝑓) = (𝑑 + 1))) ∧ (𝑥 ∈ (◡(𝑂‘𝑓) “ {𝑊}) ∧ ∀𝑔 ∈ 𝐵 ((𝐷‘𝑔) = 𝑑 → (#‘(◡(𝑂‘𝑔) “ {𝑊})) ≤ (𝐷‘𝑔)))) → ∀𝑔 ∈ 𝐵 ((𝐷‘𝑔) = 𝑑 → (#‘(◡(𝑂‘𝑔) “ {𝑊})) ≤ (𝐷‘𝑔))) |
| 126 | 10, 12, 9, 57, 82, 11, 117, 118, 52, 119, 120, 44, 121, 122, 123, 124, 125 | fta1glem2 23926 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0)
∧ (𝑓 ∈ 𝐵 ∧ (𝐷‘𝑓) = (𝑑 + 1))) ∧ (𝑥 ∈ (◡(𝑂‘𝑓) “ {𝑊}) ∧ ∀𝑔 ∈ 𝐵 ((𝐷‘𝑔) = 𝑑 → (#‘(◡(𝑂‘𝑔) “ {𝑊})) ≤ (𝐷‘𝑔)))) → (#‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓)) |
| 127 | 126 | exp32 631 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0)
∧ (𝑓 ∈ 𝐵 ∧ (𝐷‘𝑓) = (𝑑 + 1))) → (𝑥 ∈ (◡(𝑂‘𝑓) “ {𝑊}) → (∀𝑔 ∈ 𝐵 ((𝐷‘𝑔) = 𝑑 → (#‘(◡(𝑂‘𝑔) “ {𝑊})) ≤ (𝐷‘𝑔)) → (#‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓)))) |
| 128 | 127 | exlimdv 1861 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0)
∧ (𝑓 ∈ 𝐵 ∧ (𝐷‘𝑓) = (𝑑 + 1))) → (∃𝑥 𝑥 ∈ (◡(𝑂‘𝑓) “ {𝑊}) → (∀𝑔 ∈ 𝐵 ((𝐷‘𝑔) = 𝑑 → (#‘(◡(𝑂‘𝑔) “ {𝑊})) ≤ (𝐷‘𝑔)) → (#‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓)))) |
| 129 | 116, 128 | syl5bi 232 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0)
∧ (𝑓 ∈ 𝐵 ∧ (𝐷‘𝑓) = (𝑑 + 1))) → ((◡(𝑂‘𝑓) “ {𝑊}) ≠ ∅ → (∀𝑔 ∈ 𝐵 ((𝐷‘𝑔) = 𝑑 → (#‘(◡(𝑂‘𝑔) “ {𝑊})) ≤ (𝐷‘𝑔)) → (#‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓)))) |
| 130 | 115, 129 | pm2.61dne 2880 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0)
∧ (𝑓 ∈ 𝐵 ∧ (𝐷‘𝑓) = (𝑑 + 1))) → (∀𝑔 ∈ 𝐵 ((𝐷‘𝑔) = 𝑑 → (#‘(◡(𝑂‘𝑔) “ {𝑊})) ≤ (𝐷‘𝑔)) → (#‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓))) |
| 131 | 130 | expr 643 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0)
∧ 𝑓 ∈ 𝐵) → ((𝐷‘𝑓) = (𝑑 + 1) → (∀𝑔 ∈ 𝐵 ((𝐷‘𝑔) = 𝑑 → (#‘(◡(𝑂‘𝑔) “ {𝑊})) ≤ (𝐷‘𝑔)) → (#‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓)))) |
| 132 | 131 | com23 86 |
. . . . . . . . 9
⊢ (((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0)
∧ 𝑓 ∈ 𝐵) → (∀𝑔 ∈ 𝐵 ((𝐷‘𝑔) = 𝑑 → (#‘(◡(𝑂‘𝑔) “ {𝑊})) ≤ (𝐷‘𝑔)) → ((𝐷‘𝑓) = (𝑑 + 1) → (#‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓)))) |
| 133 | 132 | ralrimdva 2969 |
. . . . . . . 8
⊢ ((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0)
→ (∀𝑔 ∈
𝐵 ((𝐷‘𝑔) = 𝑑 → (#‘(◡(𝑂‘𝑔) “ {𝑊})) ≤ (𝐷‘𝑔)) → ∀𝑓 ∈ 𝐵 ((𝐷‘𝑓) = (𝑑 + 1) → (#‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓)))) |
| 134 | 105, 133 | syl5bi 232 |
. . . . . . 7
⊢ ((𝑅 ∈ IDomn ∧ 𝑑 ∈ ℕ0)
→ (∀𝑓 ∈
𝐵 ((𝐷‘𝑓) = 𝑑 → (#‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓)) → ∀𝑓 ∈ 𝐵 ((𝐷‘𝑓) = (𝑑 + 1) → (#‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓)))) |
| 135 | 134 | expcom 451 |
. . . . . 6
⊢ (𝑑 ∈ ℕ0
→ (𝑅 ∈ IDomn
→ (∀𝑓 ∈
𝐵 ((𝐷‘𝑓) = 𝑑 → (#‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓)) → ∀𝑓 ∈ 𝐵 ((𝐷‘𝑓) = (𝑑 + 1) → (#‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓))))) |
| 136 | 135 | a2d 29 |
. . . . 5
⊢ (𝑑 ∈ ℕ0
→ ((𝑅 ∈ IDomn
→ ∀𝑓 ∈
𝐵 ((𝐷‘𝑓) = 𝑑 → (#‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓))) → (𝑅 ∈ IDomn → ∀𝑓 ∈ 𝐵 ((𝐷‘𝑓) = (𝑑 + 1) → (#‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓))))) |
| 137 | 18, 22, 26, 30, 96, 136 | nn0ind 11472 |
. . . 4
⊢ ((𝐷‘𝐹) ∈ ℕ0 → (𝑅 ∈ IDomn →
∀𝑓 ∈ 𝐵 ((𝐷‘𝑓) = (𝐷‘𝐹) → (#‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓)))) |
| 138 | 14, 3, 137 | sylc 65 |
. . 3
⊢ (𝜑 → ∀𝑓 ∈ 𝐵 ((𝐷‘𝑓) = (𝐷‘𝐹) → (#‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓))) |
| 139 | | fveq2 6191 |
. . . . . 6
⊢ (𝑓 = 𝐹 → (𝐷‘𝑓) = (𝐷‘𝐹)) |
| 140 | 139 | eqeq1d 2624 |
. . . . 5
⊢ (𝑓 = 𝐹 → ((𝐷‘𝑓) = (𝐷‘𝐹) ↔ (𝐷‘𝐹) = (𝐷‘𝐹))) |
| 141 | | fveq2 6191 |
. . . . . . . . 9
⊢ (𝑓 = 𝐹 → (𝑂‘𝑓) = (𝑂‘𝐹)) |
| 142 | 141 | cnveqd 5298 |
. . . . . . . 8
⊢ (𝑓 = 𝐹 → ◡(𝑂‘𝑓) = ◡(𝑂‘𝐹)) |
| 143 | 142 | imaeq1d 5465 |
. . . . . . 7
⊢ (𝑓 = 𝐹 → (◡(𝑂‘𝑓) “ {𝑊}) = (◡(𝑂‘𝐹) “ {𝑊})) |
| 144 | 143 | fveq2d 6195 |
. . . . . 6
⊢ (𝑓 = 𝐹 → (#‘(◡(𝑂‘𝑓) “ {𝑊})) = (#‘(◡(𝑂‘𝐹) “ {𝑊}))) |
| 145 | 144, 139 | breq12d 4666 |
. . . . 5
⊢ (𝑓 = 𝐹 → ((#‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓) ↔ (#‘(◡(𝑂‘𝐹) “ {𝑊})) ≤ (𝐷‘𝐹))) |
| 146 | 140, 145 | imbi12d 334 |
. . . 4
⊢ (𝑓 = 𝐹 → (((𝐷‘𝑓) = (𝐷‘𝐹) → (#‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓)) ↔ ((𝐷‘𝐹) = (𝐷‘𝐹) → (#‘(◡(𝑂‘𝐹) “ {𝑊})) ≤ (𝐷‘𝐹)))) |
| 147 | 146 | rspcv 3305 |
. . 3
⊢ (𝐹 ∈ 𝐵 → (∀𝑓 ∈ 𝐵 ((𝐷‘𝑓) = (𝐷‘𝐹) → (#‘(◡(𝑂‘𝑓) “ {𝑊})) ≤ (𝐷‘𝑓)) → ((𝐷‘𝐹) = (𝐷‘𝐹) → (#‘(◡(𝑂‘𝐹) “ {𝑊})) ≤ (𝐷‘𝐹)))) |
| 148 | 2, 138, 147 | sylc 65 |
. 2
⊢ (𝜑 → ((𝐷‘𝐹) = (𝐷‘𝐹) → (#‘(◡(𝑂‘𝐹) “ {𝑊})) ≤ (𝐷‘𝐹))) |
| 149 | 1, 148 | mpi 20 |
1
⊢ (𝜑 → (#‘(◡(𝑂‘𝐹) “ {𝑊})) ≤ (𝐷‘𝐹)) |