MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  znidomb Structured version   Visualization version   GIF version

Theorem znidomb 19910
Description: The ℤ/n structure is a domain (and hence a field) precisely when 𝑛 is prime. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypothesis
Ref Expression
zntos.y 𝑌 = (ℤ/nℤ‘𝑁)
Assertion
Ref Expression
znidomb (𝑁 ∈ ℕ → (𝑌 ∈ IDomn ↔ 𝑁 ∈ ℙ))

Proof of Theorem znidomb
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 2z 11409 . . . . . 6 2 ∈ ℤ
21a1i 11 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) → 2 ∈ ℤ)
3 nnz 11399 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
43adantr 481 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) → 𝑁 ∈ ℤ)
5 hash2 13193 . . . . . . 7 (#‘2𝑜) = 2
6 isidom 19304 . . . . . . . . . . . 12 (𝑌 ∈ IDomn ↔ (𝑌 ∈ CRing ∧ 𝑌 ∈ Domn))
76simprbi 480 . . . . . . . . . . 11 (𝑌 ∈ IDomn → 𝑌 ∈ Domn)
8 domnnzr 19295 . . . . . . . . . . 11 (𝑌 ∈ Domn → 𝑌 ∈ NzRing)
97, 8syl 17 . . . . . . . . . 10 (𝑌 ∈ IDomn → 𝑌 ∈ NzRing)
10 eqid 2622 . . . . . . . . . . . 12 (Base‘𝑌) = (Base‘𝑌)
1110isnzr2 19263 . . . . . . . . . . 11 (𝑌 ∈ NzRing ↔ (𝑌 ∈ Ring ∧ 2𝑜 ≼ (Base‘𝑌)))
1211simprbi 480 . . . . . . . . . 10 (𝑌 ∈ NzRing → 2𝑜 ≼ (Base‘𝑌))
139, 12syl 17 . . . . . . . . 9 (𝑌 ∈ IDomn → 2𝑜 ≼ (Base‘𝑌))
1413adantl 482 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) → 2𝑜 ≼ (Base‘𝑌))
15 df2o2 7574 . . . . . . . . . 10 2𝑜 = {∅, {∅}}
16 prfi 8235 . . . . . . . . . 10 {∅, {∅}} ∈ Fin
1715, 16eqeltri 2697 . . . . . . . . 9 2𝑜 ∈ Fin
18 fvex 6201 . . . . . . . . 9 (Base‘𝑌) ∈ V
19 hashdom 13168 . . . . . . . . 9 ((2𝑜 ∈ Fin ∧ (Base‘𝑌) ∈ V) → ((#‘2𝑜) ≤ (#‘(Base‘𝑌)) ↔ 2𝑜 ≼ (Base‘𝑌)))
2017, 18, 19mp2an 708 . . . . . . . 8 ((#‘2𝑜) ≤ (#‘(Base‘𝑌)) ↔ 2𝑜 ≼ (Base‘𝑌))
2114, 20sylibr 224 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) → (#‘2𝑜) ≤ (#‘(Base‘𝑌)))
225, 21syl5eqbrr 4689 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) → 2 ≤ (#‘(Base‘𝑌)))
23 zntos.y . . . . . . . 8 𝑌 = (ℤ/nℤ‘𝑁)
2423, 10znhash 19907 . . . . . . 7 (𝑁 ∈ ℕ → (#‘(Base‘𝑌)) = 𝑁)
2524adantr 481 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) → (#‘(Base‘𝑌)) = 𝑁)
2622, 25breqtrd 4679 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) → 2 ≤ 𝑁)
27 eluz2 11693 . . . . 5 (𝑁 ∈ (ℤ‘2) ↔ (2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁))
282, 4, 26, 27syl3anbrc 1246 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) → 𝑁 ∈ (ℤ‘2))
29 nncn 11028 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
3029ad2antrr 762 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 𝑁 ∈ ℂ)
31 nncn 11028 . . . . . . . . . . . 12 (𝑥 ∈ ℕ → 𝑥 ∈ ℂ)
3231ad2antrl 764 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 𝑥 ∈ ℂ)
33 nnne0 11053 . . . . . . . . . . . 12 (𝑥 ∈ ℕ → 𝑥 ≠ 0)
3433ad2antrl 764 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 𝑥 ≠ 0)
3530, 32, 34divcan1d 10802 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → ((𝑁 / 𝑥) · 𝑥) = 𝑁)
3635fveq2d 6195 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → ((ℤRHom‘𝑌)‘((𝑁 / 𝑥) · 𝑥)) = ((ℤRHom‘𝑌)‘𝑁))
377ad2antlr 763 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 𝑌 ∈ Domn)
38 domnring 19296 . . . . . . . . . . . 12 (𝑌 ∈ Domn → 𝑌 ∈ Ring)
3937, 38syl 17 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 𝑌 ∈ Ring)
40 eqid 2622 . . . . . . . . . . . 12 (ℤRHom‘𝑌) = (ℤRHom‘𝑌)
4140zrhrhm 19860 . . . . . . . . . . 11 (𝑌 ∈ Ring → (ℤRHom‘𝑌) ∈ (ℤring RingHom 𝑌))
4239, 41syl 17 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (ℤRHom‘𝑌) ∈ (ℤring RingHom 𝑌))
43 simprr 796 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 𝑥𝑁)
44 nnz 11399 . . . . . . . . . . . . 13 (𝑥 ∈ ℕ → 𝑥 ∈ ℤ)
4544ad2antrl 764 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 𝑥 ∈ ℤ)
463ad2antrr 762 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 𝑁 ∈ ℤ)
47 dvdsval2 14986 . . . . . . . . . . . 12 ((𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝑥𝑁 ↔ (𝑁 / 𝑥) ∈ ℤ))
4845, 34, 46, 47syl3anc 1326 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (𝑥𝑁 ↔ (𝑁 / 𝑥) ∈ ℤ))
4943, 48mpbid 222 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (𝑁 / 𝑥) ∈ ℤ)
50 zringbas 19824 . . . . . . . . . . 11 ℤ = (Base‘ℤring)
51 zringmulr 19827 . . . . . . . . . . 11 · = (.r‘ℤring)
52 eqid 2622 . . . . . . . . . . 11 (.r𝑌) = (.r𝑌)
5350, 51, 52rhmmul 18727 . . . . . . . . . 10 (((ℤRHom‘𝑌) ∈ (ℤring RingHom 𝑌) ∧ (𝑁 / 𝑥) ∈ ℤ ∧ 𝑥 ∈ ℤ) → ((ℤRHom‘𝑌)‘((𝑁 / 𝑥) · 𝑥)) = (((ℤRHom‘𝑌)‘(𝑁 / 𝑥))(.r𝑌)((ℤRHom‘𝑌)‘𝑥)))
5442, 49, 45, 53syl3anc 1326 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → ((ℤRHom‘𝑌)‘((𝑁 / 𝑥) · 𝑥)) = (((ℤRHom‘𝑌)‘(𝑁 / 𝑥))(.r𝑌)((ℤRHom‘𝑌)‘𝑥)))
55 iddvds 14995 . . . . . . . . . . 11 (𝑁 ∈ ℤ → 𝑁𝑁)
5646, 55syl 17 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 𝑁𝑁)
57 nnnn0 11299 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
5857ad2antrr 762 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 𝑁 ∈ ℕ0)
59 eqid 2622 . . . . . . . . . . . 12 (0g𝑌) = (0g𝑌)
6023, 40, 59zndvds0 19899 . . . . . . . . . . 11 ((𝑁 ∈ ℕ0𝑁 ∈ ℤ) → (((ℤRHom‘𝑌)‘𝑁) = (0g𝑌) ↔ 𝑁𝑁))
6158, 46, 60syl2anc 693 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (((ℤRHom‘𝑌)‘𝑁) = (0g𝑌) ↔ 𝑁𝑁))
6256, 61mpbird 247 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → ((ℤRHom‘𝑌)‘𝑁) = (0g𝑌))
6336, 54, 623eqtr3d 2664 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (((ℤRHom‘𝑌)‘(𝑁 / 𝑥))(.r𝑌)((ℤRHom‘𝑌)‘𝑥)) = (0g𝑌))
6450, 10rhmf 18726 . . . . . . . . . . 11 ((ℤRHom‘𝑌) ∈ (ℤring RingHom 𝑌) → (ℤRHom‘𝑌):ℤ⟶(Base‘𝑌))
6542, 64syl 17 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (ℤRHom‘𝑌):ℤ⟶(Base‘𝑌))
6665, 49ffvelrnd 6360 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → ((ℤRHom‘𝑌)‘(𝑁 / 𝑥)) ∈ (Base‘𝑌))
6765, 45ffvelrnd 6360 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → ((ℤRHom‘𝑌)‘𝑥) ∈ (Base‘𝑌))
6810, 52, 59domneq0 19297 . . . . . . . . 9 ((𝑌 ∈ Domn ∧ ((ℤRHom‘𝑌)‘(𝑁 / 𝑥)) ∈ (Base‘𝑌) ∧ ((ℤRHom‘𝑌)‘𝑥) ∈ (Base‘𝑌)) → ((((ℤRHom‘𝑌)‘(𝑁 / 𝑥))(.r𝑌)((ℤRHom‘𝑌)‘𝑥)) = (0g𝑌) ↔ (((ℤRHom‘𝑌)‘(𝑁 / 𝑥)) = (0g𝑌) ∨ ((ℤRHom‘𝑌)‘𝑥) = (0g𝑌))))
6937, 66, 67, 68syl3anc 1326 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → ((((ℤRHom‘𝑌)‘(𝑁 / 𝑥))(.r𝑌)((ℤRHom‘𝑌)‘𝑥)) = (0g𝑌) ↔ (((ℤRHom‘𝑌)‘(𝑁 / 𝑥)) = (0g𝑌) ∨ ((ℤRHom‘𝑌)‘𝑥) = (0g𝑌))))
7063, 69mpbid 222 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (((ℤRHom‘𝑌)‘(𝑁 / 𝑥)) = (0g𝑌) ∨ ((ℤRHom‘𝑌)‘𝑥) = (0g𝑌)))
7123, 40, 59zndvds0 19899 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ (𝑁 / 𝑥) ∈ ℤ) → (((ℤRHom‘𝑌)‘(𝑁 / 𝑥)) = (0g𝑌) ↔ 𝑁 ∥ (𝑁 / 𝑥)))
7258, 49, 71syl2anc 693 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (((ℤRHom‘𝑌)‘(𝑁 / 𝑥)) = (0g𝑌) ↔ 𝑁 ∥ (𝑁 / 𝑥)))
73 nnre 11027 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
7473ad2antrr 762 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 𝑁 ∈ ℝ)
75 nnre 11027 . . . . . . . . . . . . . 14 (𝑥 ∈ ℕ → 𝑥 ∈ ℝ)
7675ad2antrl 764 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 𝑥 ∈ ℝ)
77 nngt0 11049 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → 0 < 𝑁)
7877ad2antrr 762 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 0 < 𝑁)
79 nngt0 11049 . . . . . . . . . . . . . 14 (𝑥 ∈ ℕ → 0 < 𝑥)
8079ad2antrl 764 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 0 < 𝑥)
8174, 76, 78, 80divgt0d 10959 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 0 < (𝑁 / 𝑥))
82 elnnz 11387 . . . . . . . . . . . 12 ((𝑁 / 𝑥) ∈ ℕ ↔ ((𝑁 / 𝑥) ∈ ℤ ∧ 0 < (𝑁 / 𝑥)))
8349, 81, 82sylanbrc 698 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (𝑁 / 𝑥) ∈ ℕ)
84 dvdsle 15032 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ (𝑁 / 𝑥) ∈ ℕ) → (𝑁 ∥ (𝑁 / 𝑥) → 𝑁 ≤ (𝑁 / 𝑥)))
8546, 83, 84syl2anc 693 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (𝑁 ∥ (𝑁 / 𝑥) → 𝑁 ≤ (𝑁 / 𝑥)))
86 1red 10055 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 1 ∈ ℝ)
87 0lt1 10550 . . . . . . . . . . . . 13 0 < 1
8887a1i 11 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 0 < 1)
89 lediv2 10913 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ ∧ 0 < 𝑥) ∧ (1 ∈ ℝ ∧ 0 < 1) ∧ (𝑁 ∈ ℝ ∧ 0 < 𝑁)) → (𝑥 ≤ 1 ↔ (𝑁 / 1) ≤ (𝑁 / 𝑥)))
9076, 80, 86, 88, 74, 78, 89syl222anc 1342 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (𝑥 ≤ 1 ↔ (𝑁 / 1) ≤ (𝑁 / 𝑥)))
91 nnle1eq1 11048 . . . . . . . . . . . 12 (𝑥 ∈ ℕ → (𝑥 ≤ 1 ↔ 𝑥 = 1))
9291ad2antrl 764 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (𝑥 ≤ 1 ↔ 𝑥 = 1))
9330div1d 10793 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (𝑁 / 1) = 𝑁)
9493breq1d 4663 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → ((𝑁 / 1) ≤ (𝑁 / 𝑥) ↔ 𝑁 ≤ (𝑁 / 𝑥)))
9590, 92, 943bitr3rd 299 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (𝑁 ≤ (𝑁 / 𝑥) ↔ 𝑥 = 1))
9685, 95sylibd 229 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (𝑁 ∥ (𝑁 / 𝑥) → 𝑥 = 1))
9772, 96sylbid 230 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (((ℤRHom‘𝑌)‘(𝑁 / 𝑥)) = (0g𝑌) → 𝑥 = 1))
9823, 40, 59zndvds0 19899 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑥 ∈ ℤ) → (((ℤRHom‘𝑌)‘𝑥) = (0g𝑌) ↔ 𝑁𝑥))
9958, 45, 98syl2anc 693 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (((ℤRHom‘𝑌)‘𝑥) = (0g𝑌) ↔ 𝑁𝑥))
100 nnnn0 11299 . . . . . . . . . . 11 (𝑥 ∈ ℕ → 𝑥 ∈ ℕ0)
101100ad2antrl 764 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → 𝑥 ∈ ℕ0)
102 dvdseq 15036 . . . . . . . . . . 11 (((𝑥 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑥𝑁𝑁𝑥)) → 𝑥 = 𝑁)
103102expr 643 . . . . . . . . . 10 (((𝑥 ∈ ℕ0𝑁 ∈ ℕ0) ∧ 𝑥𝑁) → (𝑁𝑥𝑥 = 𝑁))
104101, 58, 43, 103syl21anc 1325 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (𝑁𝑥𝑥 = 𝑁))
10599, 104sylbid 230 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (((ℤRHom‘𝑌)‘𝑥) = (0g𝑌) → 𝑥 = 𝑁))
10697, 105orim12d 883 . . . . . . 7 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → ((((ℤRHom‘𝑌)‘(𝑁 / 𝑥)) = (0g𝑌) ∨ ((ℤRHom‘𝑌)‘𝑥) = (0g𝑌)) → (𝑥 = 1 ∨ 𝑥 = 𝑁)))
10770, 106mpd 15 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ (𝑥 ∈ ℕ ∧ 𝑥𝑁)) → (𝑥 = 1 ∨ 𝑥 = 𝑁))
108107expr 643 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) ∧ 𝑥 ∈ ℕ) → (𝑥𝑁 → (𝑥 = 1 ∨ 𝑥 = 𝑁)))
109108ralrimiva 2966 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) → ∀𝑥 ∈ ℕ (𝑥𝑁 → (𝑥 = 1 ∨ 𝑥 = 𝑁)))
110 isprm2 15395 . . . 4 (𝑁 ∈ ℙ ↔ (𝑁 ∈ (ℤ‘2) ∧ ∀𝑥 ∈ ℕ (𝑥𝑁 → (𝑥 = 1 ∨ 𝑥 = 𝑁))))
11128, 109, 110sylanbrc 698 . . 3 ((𝑁 ∈ ℕ ∧ 𝑌 ∈ IDomn) → 𝑁 ∈ ℙ)
112111ex 450 . 2 (𝑁 ∈ ℕ → (𝑌 ∈ IDomn → 𝑁 ∈ ℙ))
11323znfld 19909 . . 3 (𝑁 ∈ ℙ → 𝑌 ∈ Field)
114 fldidom 19305 . . 3 (𝑌 ∈ Field → 𝑌 ∈ IDomn)
115113, 114syl 17 . 2 (𝑁 ∈ ℙ → 𝑌 ∈ IDomn)
116112, 115impbid1 215 1 (𝑁 ∈ ℕ → (𝑌 ∈ IDomn ↔ 𝑁 ∈ ℙ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384   = wceq 1483  wcel 1990  wne 2794  wral 2912  Vcvv 3200  c0 3915  {csn 4177  {cpr 4179   class class class wbr 4653  wf 5884  cfv 5888  (class class class)co 6650  2𝑜c2o 7554  cdom 7953  Fincfn 7955  cc 9934  cr 9935  0cc0 9936  1c1 9937   · cmul 9941   < clt 10074  cle 10075   / cdiv 10684  cn 11020  2c2 11070  0cn0 11292  cz 11377  cuz 11687  #chash 13117  cdvds 14983  cprime 15385  Basecbs 15857  .rcmulr 15942  0gc0g 16100  Ringcrg 18547  CRingccrg 18548   RingHom crh 18712  Fieldcfield 18748  NzRingcnzr 19257  Domncdomn 19280  IDomncidom 19281  ringzring 19818  ℤRHomczrh 19848  ℤ/nczn 19851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-ec 7744  df-qs 7748  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-sup 8348  df-inf 8349  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-rp 11833  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-dvds 14984  df-gcd 15217  df-prm 15386  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-0g 16102  df-imas 16168  df-qus 16169  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-nsg 17592  df-eqg 17593  df-ghm 17658  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-rnghom 18715  df-drng 18749  df-field 18750  df-subrg 18778  df-lmod 18865  df-lss 18933  df-lsp 18972  df-sra 19172  df-rgmod 19173  df-lidl 19174  df-rsp 19175  df-2idl 19232  df-nzr 19258  df-rlreg 19283  df-domn 19284  df-idom 19285  df-cnfld 19747  df-zring 19819  df-zrh 19852  df-zn 19855
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator