Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isldil Structured version   Visualization version   GIF version

Theorem isldil 35396
Description: The predicate "is a lattice dilation". Similar to definition of dilation in [Crawley] p. 111. (Contributed by NM, 11-May-2012.)
Hypotheses
Ref Expression
ldilset.b 𝐵 = (Base‘𝐾)
ldilset.l = (le‘𝐾)
ldilset.h 𝐻 = (LHyp‘𝐾)
ldilset.i 𝐼 = (LAut‘𝐾)
ldilset.d 𝐷 = ((LDil‘𝐾)‘𝑊)
Assertion
Ref Expression
isldil ((𝐾𝐶𝑊𝐻) → (𝐹𝐷 ↔ (𝐹𝐼 ∧ ∀𝑥𝐵 (𝑥 𝑊 → (𝐹𝑥) = 𝑥))))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐾   𝑥,𝑊   𝑥,𝐹
Allowed substitution hints:   𝐶(𝑥)   𝐷(𝑥)   𝐻(𝑥)   𝐼(𝑥)   (𝑥)

Proof of Theorem isldil
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 ldilset.b . . . 4 𝐵 = (Base‘𝐾)
2 ldilset.l . . . 4 = (le‘𝐾)
3 ldilset.h . . . 4 𝐻 = (LHyp‘𝐾)
4 ldilset.i . . . 4 𝐼 = (LAut‘𝐾)
5 ldilset.d . . . 4 𝐷 = ((LDil‘𝐾)‘𝑊)
61, 2, 3, 4, 5ldilset 35395 . . 3 ((𝐾𝐶𝑊𝐻) → 𝐷 = {𝑓𝐼 ∣ ∀𝑥𝐵 (𝑥 𝑊 → (𝑓𝑥) = 𝑥)})
76eleq2d 2687 . 2 ((𝐾𝐶𝑊𝐻) → (𝐹𝐷𝐹 ∈ {𝑓𝐼 ∣ ∀𝑥𝐵 (𝑥 𝑊 → (𝑓𝑥) = 𝑥)}))
8 fveq1 6190 . . . . . 6 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
98eqeq1d 2624 . . . . 5 (𝑓 = 𝐹 → ((𝑓𝑥) = 𝑥 ↔ (𝐹𝑥) = 𝑥))
109imbi2d 330 . . . 4 (𝑓 = 𝐹 → ((𝑥 𝑊 → (𝑓𝑥) = 𝑥) ↔ (𝑥 𝑊 → (𝐹𝑥) = 𝑥)))
1110ralbidv 2986 . . 3 (𝑓 = 𝐹 → (∀𝑥𝐵 (𝑥 𝑊 → (𝑓𝑥) = 𝑥) ↔ ∀𝑥𝐵 (𝑥 𝑊 → (𝐹𝑥) = 𝑥)))
1211elrab 3363 . 2 (𝐹 ∈ {𝑓𝐼 ∣ ∀𝑥𝐵 (𝑥 𝑊 → (𝑓𝑥) = 𝑥)} ↔ (𝐹𝐼 ∧ ∀𝑥𝐵 (𝑥 𝑊 → (𝐹𝑥) = 𝑥)))
137, 12syl6bb 276 1 ((𝐾𝐶𝑊𝐻) → (𝐹𝐷 ↔ (𝐹𝐼 ∧ ∀𝑥𝐵 (𝑥 𝑊 → (𝐹𝑥) = 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  {crab 2916   class class class wbr 4653  cfv 5888  Basecbs 15857  lecple 15948  LHypclh 35270  LAutclaut 35271  LDilcldil 35386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ldil 35390
This theorem is referenced by:  ldillaut  35397  ldilval  35399  idldil  35400  ldilcnv  35401  ldilco  35402  cdleme50ldil  35836
  Copyright terms: Public domain W3C validator