Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldilco Structured version   Visualization version   GIF version

Theorem ldilco 35402
Description: The composition of two lattice automorphisms is a lattice automorphism. (Contributed by NM, 19-Apr-2013.)
Hypotheses
Ref Expression
ldilco.h 𝐻 = (LHyp‘𝐾)
ldilco.d 𝐷 = ((LDil‘𝐾)‘𝑊)
Assertion
Ref Expression
ldilco (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) → (𝐹𝐺) ∈ 𝐷)

Proof of Theorem ldilco
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp1l 1085 . . 3 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) → 𝐾𝑉)
2 ldilco.h . . . . 5 𝐻 = (LHyp‘𝐾)
3 eqid 2622 . . . . 5 (LAut‘𝐾) = (LAut‘𝐾)
4 ldilco.d . . . . 5 𝐷 = ((LDil‘𝐾)‘𝑊)
52, 3, 4ldillaut 35397 . . . 4 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷) → 𝐹 ∈ (LAut‘𝐾))
653adant3 1081 . . 3 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) → 𝐹 ∈ (LAut‘𝐾))
72, 3, 4ldillaut 35397 . . . 4 (((𝐾𝑉𝑊𝐻) ∧ 𝐺𝐷) → 𝐺 ∈ (LAut‘𝐾))
873adant2 1080 . . 3 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) → 𝐺 ∈ (LAut‘𝐾))
93lautco 35383 . . 3 ((𝐾𝑉𝐹 ∈ (LAut‘𝐾) ∧ 𝐺 ∈ (LAut‘𝐾)) → (𝐹𝐺) ∈ (LAut‘𝐾))
101, 6, 8, 9syl3anc 1326 . 2 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) → (𝐹𝐺) ∈ (LAut‘𝐾))
11 simp11 1091 . . . . . . . 8 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → (𝐾𝑉𝑊𝐻))
12 simp13 1093 . . . . . . . 8 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → 𝐺𝐷)
13 eqid 2622 . . . . . . . . 9 (Base‘𝐾) = (Base‘𝐾)
1413, 2, 4ldil1o 35398 . . . . . . . 8 (((𝐾𝑉𝑊𝐻) ∧ 𝐺𝐷) → 𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
1511, 12, 14syl2anc 693 . . . . . . 7 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → 𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾))
16 f1of 6137 . . . . . . 7 (𝐺:(Base‘𝐾)–1-1-onto→(Base‘𝐾) → 𝐺:(Base‘𝐾)⟶(Base‘𝐾))
1715, 16syl 17 . . . . . 6 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → 𝐺:(Base‘𝐾)⟶(Base‘𝐾))
18 simp2 1062 . . . . . 6 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → 𝑥 ∈ (Base‘𝐾))
19 fvco3 6275 . . . . . 6 ((𝐺:(Base‘𝐾)⟶(Base‘𝐾) ∧ 𝑥 ∈ (Base‘𝐾)) → ((𝐹𝐺)‘𝑥) = (𝐹‘(𝐺𝑥)))
2017, 18, 19syl2anc 693 . . . . 5 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → ((𝐹𝐺)‘𝑥) = (𝐹‘(𝐺𝑥)))
21 simp3 1063 . . . . . . 7 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → 𝑥(le‘𝐾)𝑊)
22 eqid 2622 . . . . . . . 8 (le‘𝐾) = (le‘𝐾)
2313, 22, 2, 4ldilval 35399 . . . . . . 7 (((𝐾𝑉𝑊𝐻) ∧ 𝐺𝐷 ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊)) → (𝐺𝑥) = 𝑥)
2411, 12, 18, 21, 23syl112anc 1330 . . . . . 6 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → (𝐺𝑥) = 𝑥)
2524fveq2d 6195 . . . . 5 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → (𝐹‘(𝐺𝑥)) = (𝐹𝑥))
26 simp12 1092 . . . . . 6 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → 𝐹𝐷)
2713, 22, 2, 4ldilval 35399 . . . . . 6 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷 ∧ (𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊)) → (𝐹𝑥) = 𝑥)
2811, 26, 18, 21, 27syl112anc 1330 . . . . 5 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → (𝐹𝑥) = 𝑥)
2920, 25, 283eqtrd 2660 . . . 4 ((((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) ∧ 𝑥 ∈ (Base‘𝐾) ∧ 𝑥(le‘𝐾)𝑊) → ((𝐹𝐺)‘𝑥) = 𝑥)
30293exp 1264 . . 3 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) → (𝑥 ∈ (Base‘𝐾) → (𝑥(le‘𝐾)𝑊 → ((𝐹𝐺)‘𝑥) = 𝑥)))
3130ralrimiv 2965 . 2 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) → ∀𝑥 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑊 → ((𝐹𝐺)‘𝑥) = 𝑥))
3213, 22, 2, 3, 4isldil 35396 . . 3 ((𝐾𝑉𝑊𝐻) → ((𝐹𝐺) ∈ 𝐷 ↔ ((𝐹𝐺) ∈ (LAut‘𝐾) ∧ ∀𝑥 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑊 → ((𝐹𝐺)‘𝑥) = 𝑥))))
33323ad2ant1 1082 . 2 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) → ((𝐹𝐺) ∈ 𝐷 ↔ ((𝐹𝐺) ∈ (LAut‘𝐾) ∧ ∀𝑥 ∈ (Base‘𝐾)(𝑥(le‘𝐾)𝑊 → ((𝐹𝐺)‘𝑥) = 𝑥))))
3410, 31, 33mpbir2and 957 1 (((𝐾𝑉𝑊𝐻) ∧ 𝐹𝐷𝐺𝐷) → (𝐹𝐺) ∈ 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912   class class class wbr 4653  ccom 5118  wf 5884  1-1-ontowf1o 5887  cfv 5888  Basecbs 15857  lecple 15948  LHypclh 35270  LAutclaut 35271  LDilcldil 35386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-laut 35275  df-ldil 35390
This theorem is referenced by:  ltrnco  36007
  Copyright terms: Public domain W3C validator