MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islinds Structured version   Visualization version   GIF version

Theorem islinds 20148
Description: Property of an independent set of vectors in terms of an independent family. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Hypothesis
Ref Expression
islinds.b 𝐵 = (Base‘𝑊)
Assertion
Ref Expression
islinds (𝑊𝑉 → (𝑋 ∈ (LIndS‘𝑊) ↔ (𝑋𝐵 ∧ ( I ↾ 𝑋) LIndF 𝑊)))

Proof of Theorem islinds
Dummy variables 𝑠 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3212 . . . . 5 (𝑊𝑉𝑊 ∈ V)
2 fveq2 6191 . . . . . . . 8 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
32pweqd 4163 . . . . . . 7 (𝑤 = 𝑊 → 𝒫 (Base‘𝑤) = 𝒫 (Base‘𝑊))
4 breq2 4657 . . . . . . 7 (𝑤 = 𝑊 → (( I ↾ 𝑠) LIndF 𝑤 ↔ ( I ↾ 𝑠) LIndF 𝑊))
53, 4rabeqbidv 3195 . . . . . 6 (𝑤 = 𝑊 → {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ ( I ↾ 𝑠) LIndF 𝑤} = {𝑠 ∈ 𝒫 (Base‘𝑊) ∣ ( I ↾ 𝑠) LIndF 𝑊})
6 df-linds 20146 . . . . . 6 LIndS = (𝑤 ∈ V ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ ( I ↾ 𝑠) LIndF 𝑤})
7 fvex 6201 . . . . . . . 8 (Base‘𝑊) ∈ V
87pwex 4848 . . . . . . 7 𝒫 (Base‘𝑊) ∈ V
98rabex 4813 . . . . . 6 {𝑠 ∈ 𝒫 (Base‘𝑊) ∣ ( I ↾ 𝑠) LIndF 𝑊} ∈ V
105, 6, 9fvmpt 6282 . . . . 5 (𝑊 ∈ V → (LIndS‘𝑊) = {𝑠 ∈ 𝒫 (Base‘𝑊) ∣ ( I ↾ 𝑠) LIndF 𝑊})
111, 10syl 17 . . . 4 (𝑊𝑉 → (LIndS‘𝑊) = {𝑠 ∈ 𝒫 (Base‘𝑊) ∣ ( I ↾ 𝑠) LIndF 𝑊})
1211eleq2d 2687 . . 3 (𝑊𝑉 → (𝑋 ∈ (LIndS‘𝑊) ↔ 𝑋 ∈ {𝑠 ∈ 𝒫 (Base‘𝑊) ∣ ( I ↾ 𝑠) LIndF 𝑊}))
13 reseq2 5391 . . . . 5 (𝑠 = 𝑋 → ( I ↾ 𝑠) = ( I ↾ 𝑋))
1413breq1d 4663 . . . 4 (𝑠 = 𝑋 → (( I ↾ 𝑠) LIndF 𝑊 ↔ ( I ↾ 𝑋) LIndF 𝑊))
1514elrab 3363 . . 3 (𝑋 ∈ {𝑠 ∈ 𝒫 (Base‘𝑊) ∣ ( I ↾ 𝑠) LIndF 𝑊} ↔ (𝑋 ∈ 𝒫 (Base‘𝑊) ∧ ( I ↾ 𝑋) LIndF 𝑊))
1612, 15syl6bb 276 . 2 (𝑊𝑉 → (𝑋 ∈ (LIndS‘𝑊) ↔ (𝑋 ∈ 𝒫 (Base‘𝑊) ∧ ( I ↾ 𝑋) LIndF 𝑊)))
177elpw2 4828 . . . 4 (𝑋 ∈ 𝒫 (Base‘𝑊) ↔ 𝑋 ⊆ (Base‘𝑊))
18 islinds.b . . . . 5 𝐵 = (Base‘𝑊)
1918sseq2i 3630 . . . 4 (𝑋𝐵𝑋 ⊆ (Base‘𝑊))
2017, 19bitr4i 267 . . 3 (𝑋 ∈ 𝒫 (Base‘𝑊) ↔ 𝑋𝐵)
2120anbi1i 731 . 2 ((𝑋 ∈ 𝒫 (Base‘𝑊) ∧ ( I ↾ 𝑋) LIndF 𝑊) ↔ (𝑋𝐵 ∧ ( I ↾ 𝑋) LIndF 𝑊))
2216, 21syl6bb 276 1 (𝑊𝑉 → (𝑋 ∈ (LIndS‘𝑊) ↔ (𝑋𝐵 ∧ ( I ↾ 𝑋) LIndF 𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  {crab 2916  Vcvv 3200  wss 3574  𝒫 cpw 4158   class class class wbr 4653   I cid 5023  cres 5116  cfv 5888  Basecbs 15857   LIndF clindf 20143  LIndSclinds 20144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-res 5126  df-iota 5851  df-fun 5890  df-fv 5896  df-linds 20146
This theorem is referenced by:  linds1  20149  linds2  20150  islinds2  20152  lindsss  20163  lindsmm  20167  lsslinds  20170
  Copyright terms: Public domain W3C validator