MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsslinds Structured version   Visualization version   GIF version

Theorem lsslinds 20170
Description: Linear independence is unchanged by working in a subspace. (Contributed by Stefan O'Rear, 24-Feb-2015.)
Hypotheses
Ref Expression
lsslindf.u 𝑈 = (LSubSp‘𝑊)
lsslindf.x 𝑋 = (𝑊s 𝑆)
Assertion
Ref Expression
lsslinds ((𝑊 ∈ LMod ∧ 𝑆𝑈𝐹𝑆) → (𝐹 ∈ (LIndS‘𝑋) ↔ 𝐹 ∈ (LIndS‘𝑊)))

Proof of Theorem lsslinds
StepHypRef Expression
1 eqid 2622 . . . . . . . 8 (Base‘𝑊) = (Base‘𝑊)
2 lsslindf.u . . . . . . . 8 𝑈 = (LSubSp‘𝑊)
31, 2lssss 18937 . . . . . . 7 (𝑆𝑈𝑆 ⊆ (Base‘𝑊))
4 lsslindf.x . . . . . . . 8 𝑋 = (𝑊s 𝑆)
54, 1ressbas2 15931 . . . . . . 7 (𝑆 ⊆ (Base‘𝑊) → 𝑆 = (Base‘𝑋))
63, 5syl 17 . . . . . 6 (𝑆𝑈𝑆 = (Base‘𝑋))
763ad2ant2 1083 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑆𝑈𝐹𝑆) → 𝑆 = (Base‘𝑋))
87sseq2d 3633 . . . 4 ((𝑊 ∈ LMod ∧ 𝑆𝑈𝐹𝑆) → (𝐹𝑆𝐹 ⊆ (Base‘𝑋)))
933ad2ant2 1083 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑆𝑈𝐹𝑆) → 𝑆 ⊆ (Base‘𝑊))
10 sstr2 3610 . . . . . 6 (𝐹𝑆 → (𝑆 ⊆ (Base‘𝑊) → 𝐹 ⊆ (Base‘𝑊)))
119, 10mpan9 486 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑆𝑈𝐹𝑆) ∧ 𝐹𝑆) → 𝐹 ⊆ (Base‘𝑊))
12 simpl3 1066 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑆𝑈𝐹𝑆) ∧ 𝐹 ⊆ (Base‘𝑊)) → 𝐹𝑆)
1311, 12impbida 877 . . . 4 ((𝑊 ∈ LMod ∧ 𝑆𝑈𝐹𝑆) → (𝐹𝑆𝐹 ⊆ (Base‘𝑊)))
148, 13bitr3d 270 . . 3 ((𝑊 ∈ LMod ∧ 𝑆𝑈𝐹𝑆) → (𝐹 ⊆ (Base‘𝑋) ↔ 𝐹 ⊆ (Base‘𝑊)))
15 rnresi 5479 . . . . 5 ran ( I ↾ 𝐹) = 𝐹
1615sseq1i 3629 . . . 4 (ran ( I ↾ 𝐹) ⊆ 𝑆𝐹𝑆)
172, 4lsslindf 20169 . . . 4 ((𝑊 ∈ LMod ∧ 𝑆𝑈 ∧ ran ( I ↾ 𝐹) ⊆ 𝑆) → (( I ↾ 𝐹) LIndF 𝑋 ↔ ( I ↾ 𝐹) LIndF 𝑊))
1816, 17syl3an3br 1367 . . 3 ((𝑊 ∈ LMod ∧ 𝑆𝑈𝐹𝑆) → (( I ↾ 𝐹) LIndF 𝑋 ↔ ( I ↾ 𝐹) LIndF 𝑊))
1914, 18anbi12d 747 . 2 ((𝑊 ∈ LMod ∧ 𝑆𝑈𝐹𝑆) → ((𝐹 ⊆ (Base‘𝑋) ∧ ( I ↾ 𝐹) LIndF 𝑋) ↔ (𝐹 ⊆ (Base‘𝑊) ∧ ( I ↾ 𝐹) LIndF 𝑊)))
20 ovex 6678 . . . 4 (𝑊s 𝑆) ∈ V
214, 20eqeltri 2697 . . 3 𝑋 ∈ V
22 eqid 2622 . . . 4 (Base‘𝑋) = (Base‘𝑋)
2322islinds 20148 . . 3 (𝑋 ∈ V → (𝐹 ∈ (LIndS‘𝑋) ↔ (𝐹 ⊆ (Base‘𝑋) ∧ ( I ↾ 𝐹) LIndF 𝑋)))
2421, 23mp1i 13 . 2 ((𝑊 ∈ LMod ∧ 𝑆𝑈𝐹𝑆) → (𝐹 ∈ (LIndS‘𝑋) ↔ (𝐹 ⊆ (Base‘𝑋) ∧ ( I ↾ 𝐹) LIndF 𝑋)))
251islinds 20148 . . 3 (𝑊 ∈ LMod → (𝐹 ∈ (LIndS‘𝑊) ↔ (𝐹 ⊆ (Base‘𝑊) ∧ ( I ↾ 𝐹) LIndF 𝑊)))
26253ad2ant1 1082 . 2 ((𝑊 ∈ LMod ∧ 𝑆𝑈𝐹𝑆) → (𝐹 ∈ (LIndS‘𝑊) ↔ (𝐹 ⊆ (Base‘𝑊) ∧ ( I ↾ 𝐹) LIndF 𝑊)))
2719, 24, 263bitr4d 300 1 ((𝑊 ∈ LMod ∧ 𝑆𝑈𝐹𝑆) → (𝐹 ∈ (LIndS‘𝑋) ↔ 𝐹 ∈ (LIndS‘𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  Vcvv 3200  wss 3574   class class class wbr 4653   I cid 5023  ran crn 5115  cres 5116  cfv 5888  (class class class)co 6650  Basecbs 15857  s cress 15858  LModclmod 18863  LSubSpclss 18932   LIndF clindf 20143  LIndSclinds 20144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-sca 15957  df-vsca 15958  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-minusg 17426  df-sbg 17427  df-subg 17591  df-mgp 18490  df-ur 18502  df-ring 18549  df-lmod 18865  df-lss 18933  df-lsp 18972  df-lindf 20145  df-linds 20146
This theorem is referenced by:  islinds3  20173
  Copyright terms: Public domain W3C validator