MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismon2 Structured version   Visualization version   GIF version

Theorem ismon2 16394
Description: Write out the monomorphism property directly. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
ismon.b 𝐵 = (Base‘𝐶)
ismon.h 𝐻 = (Hom ‘𝐶)
ismon.o · = (comp‘𝐶)
ismon.s 𝑀 = (Mono‘𝐶)
ismon.c (𝜑𝐶 ∈ Cat)
ismon.x (𝜑𝑋𝐵)
ismon.y (𝜑𝑌𝐵)
Assertion
Ref Expression
ismon2 (𝜑 → (𝐹 ∈ (𝑋𝑀𝑌) ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋)∀ ∈ (𝑧𝐻𝑋)((𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋· 𝑌)) → 𝑔 = ))))
Distinct variable groups:   𝑔,,𝑧,𝐵   𝜑,𝑔,,𝑧   𝐶,𝑔,,𝑧   𝑔,𝐻,,𝑧   · ,𝑔,,𝑧   𝑔,𝐹,,𝑧   𝑔,𝑋,,𝑧   𝑔,𝑌,,𝑧
Allowed substitution hints:   𝑀(𝑧,𝑔,)

Proof of Theorem ismon2
StepHypRef Expression
1 ismon.b . . 3 𝐵 = (Base‘𝐶)
2 ismon.h . . 3 𝐻 = (Hom ‘𝐶)
3 ismon.o . . 3 · = (comp‘𝐶)
4 ismon.s . . 3 𝑀 = (Mono‘𝐶)
5 ismon.c . . 3 (𝜑𝐶 ∈ Cat)
6 ismon.x . . 3 (𝜑𝑋𝐵)
7 ismon.y . . 3 (𝜑𝑌𝐵)
81, 2, 3, 4, 5, 6, 7ismon 16393 . 2 (𝜑 → (𝐹 ∈ (𝑋𝑀𝑌) ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔)))))
95ad2antrr 762 . . . . . . . 8 (((𝜑𝐹 ∈ (𝑋𝐻𝑌)) ∧ (𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋))) → 𝐶 ∈ Cat)
10 simprl 794 . . . . . . . 8 (((𝜑𝐹 ∈ (𝑋𝐻𝑌)) ∧ (𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋))) → 𝑧𝐵)
116ad2antrr 762 . . . . . . . 8 (((𝜑𝐹 ∈ (𝑋𝐻𝑌)) ∧ (𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋))) → 𝑋𝐵)
127ad2antrr 762 . . . . . . . 8 (((𝜑𝐹 ∈ (𝑋𝐻𝑌)) ∧ (𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋))) → 𝑌𝐵)
13 simprr 796 . . . . . . . 8 (((𝜑𝐹 ∈ (𝑋𝐻𝑌)) ∧ (𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋))) → 𝑔 ∈ (𝑧𝐻𝑋))
14 simplr 792 . . . . . . . 8 (((𝜑𝐹 ∈ (𝑋𝐻𝑌)) ∧ (𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋))) → 𝐹 ∈ (𝑋𝐻𝑌))
151, 2, 3, 9, 10, 11, 12, 13, 14catcocl 16346 . . . . . . 7 (((𝜑𝐹 ∈ (𝑋𝐻𝑌)) ∧ (𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋))) → (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) ∈ (𝑧𝐻𝑌))
1615anassrs 680 . . . . . 6 ((((𝜑𝐹 ∈ (𝑋𝐻𝑌)) ∧ 𝑧𝐵) ∧ 𝑔 ∈ (𝑧𝐻𝑋)) → (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) ∈ (𝑧𝐻𝑌))
1716ralrimiva 2966 . . . . 5 (((𝜑𝐹 ∈ (𝑋𝐻𝑌)) ∧ 𝑧𝐵) → ∀𝑔 ∈ (𝑧𝐻𝑋)(𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) ∈ (𝑧𝐻𝑌))
18 eqid 2622 . . . . . . . 8 (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔)) = (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔))
1918fmpt 6381 . . . . . . 7 (∀𝑔 ∈ (𝑧𝐻𝑋)(𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) ∈ (𝑧𝐻𝑌) ↔ (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔)):(𝑧𝐻𝑋)⟶(𝑧𝐻𝑌))
20 df-f1 5893 . . . . . . . 8 ((𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔)):(𝑧𝐻𝑋)–1-1→(𝑧𝐻𝑌) ↔ ((𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔)):(𝑧𝐻𝑋)⟶(𝑧𝐻𝑌) ∧ Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔))))
2120baib 944 . . . . . . 7 ((𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔)):(𝑧𝐻𝑋)⟶(𝑧𝐻𝑌) → ((𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔)):(𝑧𝐻𝑋)–1-1→(𝑧𝐻𝑌) ↔ Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔))))
2219, 21sylbi 207 . . . . . 6 (∀𝑔 ∈ (𝑧𝐻𝑋)(𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) ∈ (𝑧𝐻𝑌) → ((𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔)):(𝑧𝐻𝑋)–1-1→(𝑧𝐻𝑌) ↔ Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔))))
23 oveq2 6658 . . . . . . . 8 (𝑔 = → (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋· 𝑌)))
2418, 23f1mpt 6518 . . . . . . 7 ((𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔)):(𝑧𝐻𝑋)–1-1→(𝑧𝐻𝑌) ↔ (∀𝑔 ∈ (𝑧𝐻𝑋)(𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) ∈ (𝑧𝐻𝑌) ∧ ∀𝑔 ∈ (𝑧𝐻𝑋)∀ ∈ (𝑧𝐻𝑋)((𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋· 𝑌)) → 𝑔 = )))
2524baib 944 . . . . . 6 (∀𝑔 ∈ (𝑧𝐻𝑋)(𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) ∈ (𝑧𝐻𝑌) → ((𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔)):(𝑧𝐻𝑋)–1-1→(𝑧𝐻𝑌) ↔ ∀𝑔 ∈ (𝑧𝐻𝑋)∀ ∈ (𝑧𝐻𝑋)((𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋· 𝑌)) → 𝑔 = )))
2622, 25bitr3d 270 . . . . 5 (∀𝑔 ∈ (𝑧𝐻𝑋)(𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) ∈ (𝑧𝐻𝑌) → (Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔)) ↔ ∀𝑔 ∈ (𝑧𝐻𝑋)∀ ∈ (𝑧𝐻𝑋)((𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋· 𝑌)) → 𝑔 = )))
2717, 26syl 17 . . . 4 (((𝜑𝐹 ∈ (𝑋𝐻𝑌)) ∧ 𝑧𝐵) → (Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔)) ↔ ∀𝑔 ∈ (𝑧𝐻𝑋)∀ ∈ (𝑧𝐻𝑋)((𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋· 𝑌)) → 𝑔 = )))
2827ralbidva 2985 . . 3 ((𝜑𝐹 ∈ (𝑋𝐻𝑌)) → (∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔)) ↔ ∀𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋)∀ ∈ (𝑧𝐻𝑋)((𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋· 𝑌)) → 𝑔 = )))
2928pm5.32da 673 . 2 (𝜑 → ((𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑋) ↦ (𝐹(⟨𝑧, 𝑋· 𝑌)𝑔))) ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋)∀ ∈ (𝑧𝐻𝑋)((𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋· 𝑌)) → 𝑔 = ))))
308, 29bitrd 268 1 (𝜑 → (𝐹 ∈ (𝑋𝑀𝑌) ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ ∀𝑧𝐵𝑔 ∈ (𝑧𝐻𝑋)∀ ∈ (𝑧𝐻𝑋)((𝐹(⟨𝑧, 𝑋· 𝑌)𝑔) = (𝐹(⟨𝑧, 𝑋· 𝑌)) → 𝑔 = ))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  cop 4183  cmpt 4729  ccnv 5113  Fun wfun 5882  wf 5884  1-1wf1 5885  cfv 5888  (class class class)co 6650  Basecbs 15857  Hom chom 15952  compcco 15953  Catccat 16325  Monocmon 16388
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-cat 16329  df-mon 16390
This theorem is referenced by:  moni  16396  sectmon  16442  fthmon  16587  setcmon  16737
  Copyright terms: Public domain W3C validator