MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmpropd2 Structured version   Visualization version   GIF version

Theorem nmpropd2 22399
Description: Strong property deduction for a norm. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
nmpropd2.1 (𝜑𝐵 = (Base‘𝐾))
nmpropd2.2 (𝜑𝐵 = (Base‘𝐿))
nmpropd2.3 (𝜑𝐾 ∈ Grp)
nmpropd2.4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
nmpropd2.5 (𝜑 → ((dist‘𝐾) ↾ (𝐵 × 𝐵)) = ((dist‘𝐿) ↾ (𝐵 × 𝐵)))
Assertion
Ref Expression
nmpropd2 (𝜑 → (norm‘𝐾) = (norm‘𝐿))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝑥,𝐿,𝑦   𝜑,𝑥,𝑦

Proof of Theorem nmpropd2
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 nmpropd2.1 . . . 4 (𝜑𝐵 = (Base‘𝐾))
2 nmpropd2.2 . . . 4 (𝜑𝐵 = (Base‘𝐿))
31, 2eqtr3d 2658 . . 3 (𝜑 → (Base‘𝐾) = (Base‘𝐿))
4 nmpropd2.5 . . . . . 6 (𝜑 → ((dist‘𝐾) ↾ (𝐵 × 𝐵)) = ((dist‘𝐿) ↾ (𝐵 × 𝐵)))
51sqxpeqd 5141 . . . . . . 7 (𝜑 → (𝐵 × 𝐵) = ((Base‘𝐾) × (Base‘𝐾)))
65reseq2d 5396 . . . . . 6 (𝜑 → ((dist‘𝐾) ↾ (𝐵 × 𝐵)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))))
74, 6eqtr3d 2658 . . . . 5 (𝜑 → ((dist‘𝐿) ↾ (𝐵 × 𝐵)) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))))
82sqxpeqd 5141 . . . . . 6 (𝜑 → (𝐵 × 𝐵) = ((Base‘𝐿) × (Base‘𝐿)))
98reseq2d 5396 . . . . 5 (𝜑 → ((dist‘𝐿) ↾ (𝐵 × 𝐵)) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))))
107, 9eqtr3d 2658 . . . 4 (𝜑 → ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))))
11 eqidd 2623 . . . 4 (𝜑𝑎 = 𝑎)
12 nmpropd2.4 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))
131, 2, 12grpidpropd 17261 . . . 4 (𝜑 → (0g𝐾) = (0g𝐿))
1410, 11, 13oveq123d 6671 . . 3 (𝜑 → (𝑎((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))(0g𝐾)) = (𝑎((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿)))(0g𝐿)))
153, 14mpteq12dv 4733 . 2 (𝜑 → (𝑎 ∈ (Base‘𝐾) ↦ (𝑎((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))(0g𝐾))) = (𝑎 ∈ (Base‘𝐿) ↦ (𝑎((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿)))(0g𝐿))))
16 nmpropd2.3 . . 3 (𝜑𝐾 ∈ Grp)
17 eqid 2622 . . . 4 (norm‘𝐾) = (norm‘𝐾)
18 eqid 2622 . . . 4 (Base‘𝐾) = (Base‘𝐾)
19 eqid 2622 . . . 4 (0g𝐾) = (0g𝐾)
20 eqid 2622 . . . 4 (dist‘𝐾) = (dist‘𝐾)
21 eqid 2622 . . . 4 ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾))) = ((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))
2217, 18, 19, 20, 21nmfval2 22395 . . 3 (𝐾 ∈ Grp → (norm‘𝐾) = (𝑎 ∈ (Base‘𝐾) ↦ (𝑎((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))(0g𝐾))))
2316, 22syl 17 . 2 (𝜑 → (norm‘𝐾) = (𝑎 ∈ (Base‘𝐾) ↦ (𝑎((dist‘𝐾) ↾ ((Base‘𝐾) × (Base‘𝐾)))(0g𝐾))))
241, 2, 12grppropd 17437 . . . 4 (𝜑 → (𝐾 ∈ Grp ↔ 𝐿 ∈ Grp))
2516, 24mpbid 222 . . 3 (𝜑𝐿 ∈ Grp)
26 eqid 2622 . . . 4 (norm‘𝐿) = (norm‘𝐿)
27 eqid 2622 . . . 4 (Base‘𝐿) = (Base‘𝐿)
28 eqid 2622 . . . 4 (0g𝐿) = (0g𝐿)
29 eqid 2622 . . . 4 (dist‘𝐿) = (dist‘𝐿)
30 eqid 2622 . . . 4 ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿))) = ((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿)))
3126, 27, 28, 29, 30nmfval2 22395 . . 3 (𝐿 ∈ Grp → (norm‘𝐿) = (𝑎 ∈ (Base‘𝐿) ↦ (𝑎((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿)))(0g𝐿))))
3225, 31syl 17 . 2 (𝜑 → (norm‘𝐿) = (𝑎 ∈ (Base‘𝐿) ↦ (𝑎((dist‘𝐿) ↾ ((Base‘𝐿) × (Base‘𝐿)))(0g𝐿))))
3315, 23, 323eqtr4d 2666 1 (𝜑 → (norm‘𝐾) = (norm‘𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  cmpt 4729   × cxp 5112  cres 5116  cfv 5888  (class class class)co 6650  Basecbs 15857  +gcplusg 15941  distcds 15950  0gc0g 16100  Grpcgrp 17422  normcnm 22381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-riota 6611  df-ov 6653  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425  df-nm 22387
This theorem is referenced by:  ngppropd  22441
  Copyright terms: Public domain W3C validator