| Step | Hyp | Ref
| Expression |
| 1 | | ngpgrp 22403 |
. . . . 5
⊢ (𝑇 ∈ NrmGrp → 𝑇 ∈ Grp) |
| 2 | | tngngp2.x |
. . . . . . . 8
⊢ 𝑋 = (Base‘𝐺) |
| 3 | | fvex 6201 |
. . . . . . . 8
⊢
(Base‘𝐺)
∈ V |
| 4 | 2, 3 | eqeltri 2697 |
. . . . . . 7
⊢ 𝑋 ∈ V |
| 5 | | reex 10027 |
. . . . . . 7
⊢ ℝ
∈ V |
| 6 | | fex2 7121 |
. . . . . . 7
⊢ ((𝑁:𝑋⟶ℝ ∧ 𝑋 ∈ V ∧ ℝ ∈ V) →
𝑁 ∈
V) |
| 7 | 4, 5, 6 | mp3an23 1416 |
. . . . . 6
⊢ (𝑁:𝑋⟶ℝ → 𝑁 ∈ V) |
| 8 | 2 | a1i 11 |
. . . . . . 7
⊢ (𝑁 ∈ V → 𝑋 = (Base‘𝐺)) |
| 9 | | tngngp2.t |
. . . . . . . 8
⊢ 𝑇 = (𝐺 toNrmGrp 𝑁) |
| 10 | 9, 2 | tngbas 22445 |
. . . . . . 7
⊢ (𝑁 ∈ V → 𝑋 = (Base‘𝑇)) |
| 11 | | eqid 2622 |
. . . . . . . . 9
⊢
(+g‘𝐺) = (+g‘𝐺) |
| 12 | 9, 11 | tngplusg 22446 |
. . . . . . . 8
⊢ (𝑁 ∈ V →
(+g‘𝐺) =
(+g‘𝑇)) |
| 13 | 12 | oveqdr 6674 |
. . . . . . 7
⊢ ((𝑁 ∈ V ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝑥(+g‘𝐺)𝑦) = (𝑥(+g‘𝑇)𝑦)) |
| 14 | 8, 10, 13 | grppropd 17437 |
. . . . . 6
⊢ (𝑁 ∈ V → (𝐺 ∈ Grp ↔ 𝑇 ∈ Grp)) |
| 15 | 7, 14 | syl 17 |
. . . . 5
⊢ (𝑁:𝑋⟶ℝ → (𝐺 ∈ Grp ↔ 𝑇 ∈ Grp)) |
| 16 | 1, 15 | syl5ibr 236 |
. . . 4
⊢ (𝑁:𝑋⟶ℝ → (𝑇 ∈ NrmGrp → 𝐺 ∈ Grp)) |
| 17 | 16 | imp 445 |
. . 3
⊢ ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → 𝐺 ∈ Grp) |
| 18 | | ngpms 22404 |
. . . . . 6
⊢ (𝑇 ∈ NrmGrp → 𝑇 ∈ MetSp) |
| 19 | 18 | adantl 482 |
. . . . 5
⊢ ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → 𝑇 ∈ MetSp) |
| 20 | | eqid 2622 |
. . . . . 6
⊢
(Base‘𝑇) =
(Base‘𝑇) |
| 21 | | tngngp2.d |
. . . . . 6
⊢ 𝐷 = (dist‘𝑇) |
| 22 | 20, 21 | msmet2 22265 |
. . . . 5
⊢ (𝑇 ∈ MetSp → (𝐷 ↾ ((Base‘𝑇) × (Base‘𝑇))) ∈
(Met‘(Base‘𝑇))) |
| 23 | 19, 22 | syl 17 |
. . . 4
⊢ ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → (𝐷 ↾ ((Base‘𝑇) × (Base‘𝑇))) ∈ (Met‘(Base‘𝑇))) |
| 24 | | eqid 2622 |
. . . . . . . . . 10
⊢
(-g‘𝐺) = (-g‘𝐺) |
| 25 | 2, 24 | grpsubf 17494 |
. . . . . . . . 9
⊢ (𝐺 ∈ Grp →
(-g‘𝐺):(𝑋 × 𝑋)⟶𝑋) |
| 26 | 17, 25 | syl 17 |
. . . . . . . 8
⊢ ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) →
(-g‘𝐺):(𝑋 × 𝑋)⟶𝑋) |
| 27 | | fco 6058 |
. . . . . . . 8
⊢ ((𝑁:𝑋⟶ℝ ∧
(-g‘𝐺):(𝑋 × 𝑋)⟶𝑋) → (𝑁 ∘ (-g‘𝐺)):(𝑋 × 𝑋)⟶ℝ) |
| 28 | 26, 27 | syldan 487 |
. . . . . . 7
⊢ ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → (𝑁 ∘ (-g‘𝐺)):(𝑋 × 𝑋)⟶ℝ) |
| 29 | 7 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → 𝑁 ∈ V) |
| 30 | 9, 24 | tngds 22452 |
. . . . . . . . . 10
⊢ (𝑁 ∈ V → (𝑁 ∘
(-g‘𝐺)) =
(dist‘𝑇)) |
| 31 | 29, 30 | syl 17 |
. . . . . . . . 9
⊢ ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → (𝑁 ∘ (-g‘𝐺)) = (dist‘𝑇)) |
| 32 | 31, 21 | syl6reqr 2675 |
. . . . . . . 8
⊢ ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → 𝐷 = (𝑁 ∘ (-g‘𝐺))) |
| 33 | 32 | feq1d 6030 |
. . . . . . 7
⊢ ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → (𝐷:(𝑋 × 𝑋)⟶ℝ ↔ (𝑁 ∘ (-g‘𝐺)):(𝑋 × 𝑋)⟶ℝ)) |
| 34 | 28, 33 | mpbird 247 |
. . . . . 6
⊢ ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → 𝐷:(𝑋 × 𝑋)⟶ℝ) |
| 35 | | ffn 6045 |
. . . . . 6
⊢ (𝐷:(𝑋 × 𝑋)⟶ℝ → 𝐷 Fn (𝑋 × 𝑋)) |
| 36 | | fnresdm 6000 |
. . . . . 6
⊢ (𝐷 Fn (𝑋 × 𝑋) → (𝐷 ↾ (𝑋 × 𝑋)) = 𝐷) |
| 37 | 34, 35, 36 | 3syl 18 |
. . . . 5
⊢ ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → (𝐷 ↾ (𝑋 × 𝑋)) = 𝐷) |
| 38 | 29, 10 | syl 17 |
. . . . . . 7
⊢ ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → 𝑋 = (Base‘𝑇)) |
| 39 | 38 | sqxpeqd 5141 |
. . . . . 6
⊢ ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → (𝑋 × 𝑋) = ((Base‘𝑇) × (Base‘𝑇))) |
| 40 | 39 | reseq2d 5396 |
. . . . 5
⊢ ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → (𝐷 ↾ (𝑋 × 𝑋)) = (𝐷 ↾ ((Base‘𝑇) × (Base‘𝑇)))) |
| 41 | 37, 40 | eqtr3d 2658 |
. . . 4
⊢ ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → 𝐷 = (𝐷 ↾ ((Base‘𝑇) × (Base‘𝑇)))) |
| 42 | 38 | fveq2d 6195 |
. . . 4
⊢ ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → (Met‘𝑋) = (Met‘(Base‘𝑇))) |
| 43 | 23, 41, 42 | 3eltr4d 2716 |
. . 3
⊢ ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → 𝐷 ∈ (Met‘𝑋)) |
| 44 | 17, 43 | jca 554 |
. 2
⊢ ((𝑁:𝑋⟶ℝ ∧ 𝑇 ∈ NrmGrp) → (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) |
| 45 | 15 | biimpa 501 |
. . . 4
⊢ ((𝑁:𝑋⟶ℝ ∧ 𝐺 ∈ Grp) → 𝑇 ∈ Grp) |
| 46 | 45 | adantrr 753 |
. . 3
⊢ ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → 𝑇 ∈ Grp) |
| 47 | | simprr 796 |
. . . . . . . 8
⊢ ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → 𝐷 ∈ (Met‘𝑋)) |
| 48 | 7 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → 𝑁 ∈ V) |
| 49 | 48, 10 | syl 17 |
. . . . . . . . 9
⊢ ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → 𝑋 = (Base‘𝑇)) |
| 50 | 49 | fveq2d 6195 |
. . . . . . . 8
⊢ ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → (Met‘𝑋) = (Met‘(Base‘𝑇))) |
| 51 | 47, 50 | eleqtrd 2703 |
. . . . . . 7
⊢ ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → 𝐷 ∈ (Met‘(Base‘𝑇))) |
| 52 | | metf 22135 |
. . . . . . 7
⊢ (𝐷 ∈
(Met‘(Base‘𝑇))
→ 𝐷:((Base‘𝑇) × (Base‘𝑇))⟶ℝ) |
| 53 | 51, 52 | syl 17 |
. . . . . 6
⊢ ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → 𝐷:((Base‘𝑇) × (Base‘𝑇))⟶ℝ) |
| 54 | | ffn 6045 |
. . . . . 6
⊢ (𝐷:((Base‘𝑇) × (Base‘𝑇))⟶ℝ → 𝐷 Fn ((Base‘𝑇) × (Base‘𝑇))) |
| 55 | | fnresdm 6000 |
. . . . . 6
⊢ (𝐷 Fn ((Base‘𝑇) × (Base‘𝑇)) → (𝐷 ↾ ((Base‘𝑇) × (Base‘𝑇))) = 𝐷) |
| 56 | 53, 54, 55 | 3syl 18 |
. . . . 5
⊢ ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → (𝐷 ↾ ((Base‘𝑇) × (Base‘𝑇))) = 𝐷) |
| 57 | 56, 51 | eqeltrd 2701 |
. . . 4
⊢ ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → (𝐷 ↾ ((Base‘𝑇) × (Base‘𝑇))) ∈ (Met‘(Base‘𝑇))) |
| 58 | 56 | fveq2d 6195 |
. . . . 5
⊢ ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → (MetOpen‘(𝐷 ↾ ((Base‘𝑇) × (Base‘𝑇)))) = (MetOpen‘𝐷)) |
| 59 | | simprl 794 |
. . . . . 6
⊢ ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → 𝐺 ∈ Grp) |
| 60 | | eqid 2622 |
. . . . . . 7
⊢
(MetOpen‘𝐷) =
(MetOpen‘𝐷) |
| 61 | 9, 21, 60 | tngtopn 22454 |
. . . . . 6
⊢ ((𝐺 ∈ Grp ∧ 𝑁 ∈ V) →
(MetOpen‘𝐷) =
(TopOpen‘𝑇)) |
| 62 | 59, 48, 61 | syl2anc 693 |
. . . . 5
⊢ ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → (MetOpen‘𝐷) = (TopOpen‘𝑇)) |
| 63 | 58, 62 | eqtr2d 2657 |
. . . 4
⊢ ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → (TopOpen‘𝑇) = (MetOpen‘(𝐷 ↾ ((Base‘𝑇) × (Base‘𝑇))))) |
| 64 | | eqid 2622 |
. . . . 5
⊢
(TopOpen‘𝑇) =
(TopOpen‘𝑇) |
| 65 | 21 | reseq1i 5392 |
. . . . 5
⊢ (𝐷 ↾ ((Base‘𝑇) × (Base‘𝑇))) = ((dist‘𝑇) ↾ ((Base‘𝑇) × (Base‘𝑇))) |
| 66 | 64, 20, 65 | isms2 22255 |
. . . 4
⊢ (𝑇 ∈ MetSp ↔ ((𝐷 ↾ ((Base‘𝑇) × (Base‘𝑇))) ∈
(Met‘(Base‘𝑇))
∧ (TopOpen‘𝑇) =
(MetOpen‘(𝐷 ↾
((Base‘𝑇) ×
(Base‘𝑇)))))) |
| 67 | 57, 63, 66 | sylanbrc 698 |
. . 3
⊢ ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → 𝑇 ∈ MetSp) |
| 68 | | simpl 473 |
. . . . . . 7
⊢ ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → 𝑁:𝑋⟶ℝ) |
| 69 | 9, 2, 5 | tngnm 22455 |
. . . . . . 7
⊢ ((𝐺 ∈ Grp ∧ 𝑁:𝑋⟶ℝ) → 𝑁 = (norm‘𝑇)) |
| 70 | 59, 68, 69 | syl2anc 693 |
. . . . . 6
⊢ ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → 𝑁 = (norm‘𝑇)) |
| 71 | 8, 10 | eqtr3d 2658 |
. . . . . . . 8
⊢ (𝑁 ∈ V →
(Base‘𝐺) =
(Base‘𝑇)) |
| 72 | 71, 12 | grpsubpropd 17520 |
. . . . . . 7
⊢ (𝑁 ∈ V →
(-g‘𝐺) =
(-g‘𝑇)) |
| 73 | 48, 72 | syl 17 |
. . . . . 6
⊢ ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → (-g‘𝐺) = (-g‘𝑇)) |
| 74 | 70, 73 | coeq12d 5286 |
. . . . 5
⊢ ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → (𝑁 ∘ (-g‘𝐺)) = ((norm‘𝑇) ∘
(-g‘𝑇))) |
| 75 | 48, 30 | syl 17 |
. . . . 5
⊢ ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → (𝑁 ∘ (-g‘𝐺)) = (dist‘𝑇)) |
| 76 | 74, 75 | eqtr3d 2658 |
. . . 4
⊢ ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → ((norm‘𝑇) ∘ (-g‘𝑇)) = (dist‘𝑇)) |
| 77 | | eqimss 3657 |
. . . 4
⊢
(((norm‘𝑇)
∘ (-g‘𝑇)) = (dist‘𝑇) → ((norm‘𝑇) ∘ (-g‘𝑇)) ⊆ (dist‘𝑇)) |
| 78 | 76, 77 | syl 17 |
. . 3
⊢ ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → ((norm‘𝑇) ∘ (-g‘𝑇)) ⊆ (dist‘𝑇)) |
| 79 | | eqid 2622 |
. . . 4
⊢
(norm‘𝑇) =
(norm‘𝑇) |
| 80 | | eqid 2622 |
. . . 4
⊢
(-g‘𝑇) = (-g‘𝑇) |
| 81 | | eqid 2622 |
. . . 4
⊢
(dist‘𝑇) =
(dist‘𝑇) |
| 82 | 79, 80, 81 | isngp 22400 |
. . 3
⊢ (𝑇 ∈ NrmGrp ↔ (𝑇 ∈ Grp ∧ 𝑇 ∈ MetSp ∧
((norm‘𝑇) ∘
(-g‘𝑇))
⊆ (dist‘𝑇))) |
| 83 | 46, 67, 78, 82 | syl3anbrc 1246 |
. 2
⊢ ((𝑁:𝑋⟶ℝ ∧ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋))) → 𝑇 ∈ NrmGrp) |
| 84 | 44, 83 | impbida 877 |
1
⊢ (𝑁:𝑋⟶ℝ → (𝑇 ∈ NrmGrp ↔ (𝐺 ∈ Grp ∧ 𝐷 ∈ (Met‘𝑋)))) |