Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isrngohom Structured version   Visualization version   GIF version

Theorem isrngohom 33764
Description: The predicate "is a ring homomorphism from 𝑅 to 𝑆." (Contributed by Jeff Madsen, 19-Jun-2010.)
Hypotheses
Ref Expression
rnghomval.1 𝐺 = (1st𝑅)
rnghomval.2 𝐻 = (2nd𝑅)
rnghomval.3 𝑋 = ran 𝐺
rnghomval.4 𝑈 = (GId‘𝐻)
rnghomval.5 𝐽 = (1st𝑆)
rnghomval.6 𝐾 = (2nd𝑆)
rnghomval.7 𝑌 = ran 𝐽
rnghomval.8 𝑉 = (GId‘𝐾)
Assertion
Ref Expression
isrngohom ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝐹 ∈ (𝑅 RngHom 𝑆) ↔ (𝐹:𝑋𝑌 ∧ (𝐹𝑈) = 𝑉 ∧ ∀𝑥𝑋𝑦𝑋 ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹𝑥)𝐾(𝐹𝑦))))))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑦,𝑌   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝑈(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝐻(𝑥,𝑦)   𝐽(𝑥,𝑦)   𝐾(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑌(𝑥)

Proof of Theorem isrngohom
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 rnghomval.1 . . . 4 𝐺 = (1st𝑅)
2 rnghomval.2 . . . 4 𝐻 = (2nd𝑅)
3 rnghomval.3 . . . 4 𝑋 = ran 𝐺
4 rnghomval.4 . . . 4 𝑈 = (GId‘𝐻)
5 rnghomval.5 . . . 4 𝐽 = (1st𝑆)
6 rnghomval.6 . . . 4 𝐾 = (2nd𝑆)
7 rnghomval.7 . . . 4 𝑌 = ran 𝐽
8 rnghomval.8 . . . 4 𝑉 = (GId‘𝐾)
91, 2, 3, 4, 5, 6, 7, 8rngohomval 33763 . . 3 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝑅 RngHom 𝑆) = {𝑓 ∈ (𝑌𝑚 𝑋) ∣ ((𝑓𝑈) = 𝑉 ∧ ∀𝑥𝑋𝑦𝑋 ((𝑓‘(𝑥𝐺𝑦)) = ((𝑓𝑥)𝐽(𝑓𝑦)) ∧ (𝑓‘(𝑥𝐻𝑦)) = ((𝑓𝑥)𝐾(𝑓𝑦))))})
109eleq2d 2687 . 2 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝐹 ∈ (𝑅 RngHom 𝑆) ↔ 𝐹 ∈ {𝑓 ∈ (𝑌𝑚 𝑋) ∣ ((𝑓𝑈) = 𝑉 ∧ ∀𝑥𝑋𝑦𝑋 ((𝑓‘(𝑥𝐺𝑦)) = ((𝑓𝑥)𝐽(𝑓𝑦)) ∧ (𝑓‘(𝑥𝐻𝑦)) = ((𝑓𝑥)𝐾(𝑓𝑦))))}))
11 fvex 6201 . . . . . . . 8 (1st𝑆) ∈ V
125, 11eqeltri 2697 . . . . . . 7 𝐽 ∈ V
1312rnex 7100 . . . . . 6 ran 𝐽 ∈ V
147, 13eqeltri 2697 . . . . 5 𝑌 ∈ V
15 fvex 6201 . . . . . . . 8 (1st𝑅) ∈ V
161, 15eqeltri 2697 . . . . . . 7 𝐺 ∈ V
1716rnex 7100 . . . . . 6 ran 𝐺 ∈ V
183, 17eqeltri 2697 . . . . 5 𝑋 ∈ V
1914, 18elmap 7886 . . . 4 (𝐹 ∈ (𝑌𝑚 𝑋) ↔ 𝐹:𝑋𝑌)
2019anbi1i 731 . . 3 ((𝐹 ∈ (𝑌𝑚 𝑋) ∧ ((𝐹𝑈) = 𝑉 ∧ ∀𝑥𝑋𝑦𝑋 ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹𝑥)𝐾(𝐹𝑦))))) ↔ (𝐹:𝑋𝑌 ∧ ((𝐹𝑈) = 𝑉 ∧ ∀𝑥𝑋𝑦𝑋 ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹𝑥)𝐾(𝐹𝑦))))))
21 fveq1 6190 . . . . . 6 (𝑓 = 𝐹 → (𝑓𝑈) = (𝐹𝑈))
2221eqeq1d 2624 . . . . 5 (𝑓 = 𝐹 → ((𝑓𝑈) = 𝑉 ↔ (𝐹𝑈) = 𝑉))
23 fveq1 6190 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓‘(𝑥𝐺𝑦)) = (𝐹‘(𝑥𝐺𝑦)))
24 fveq1 6190 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
25 fveq1 6190 . . . . . . . . 9 (𝑓 = 𝐹 → (𝑓𝑦) = (𝐹𝑦))
2624, 25oveq12d 6668 . . . . . . . 8 (𝑓 = 𝐹 → ((𝑓𝑥)𝐽(𝑓𝑦)) = ((𝐹𝑥)𝐽(𝐹𝑦)))
2723, 26eqeq12d 2637 . . . . . . 7 (𝑓 = 𝐹 → ((𝑓‘(𝑥𝐺𝑦)) = ((𝑓𝑥)𝐽(𝑓𝑦)) ↔ (𝐹‘(𝑥𝐺𝑦)) = ((𝐹𝑥)𝐽(𝐹𝑦))))
28 fveq1 6190 . . . . . . . 8 (𝑓 = 𝐹 → (𝑓‘(𝑥𝐻𝑦)) = (𝐹‘(𝑥𝐻𝑦)))
2924, 25oveq12d 6668 . . . . . . . 8 (𝑓 = 𝐹 → ((𝑓𝑥)𝐾(𝑓𝑦)) = ((𝐹𝑥)𝐾(𝐹𝑦)))
3028, 29eqeq12d 2637 . . . . . . 7 (𝑓 = 𝐹 → ((𝑓‘(𝑥𝐻𝑦)) = ((𝑓𝑥)𝐾(𝑓𝑦)) ↔ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹𝑥)𝐾(𝐹𝑦))))
3127, 30anbi12d 747 . . . . . 6 (𝑓 = 𝐹 → (((𝑓‘(𝑥𝐺𝑦)) = ((𝑓𝑥)𝐽(𝑓𝑦)) ∧ (𝑓‘(𝑥𝐻𝑦)) = ((𝑓𝑥)𝐾(𝑓𝑦))) ↔ ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹𝑥)𝐾(𝐹𝑦)))))
32312ralbidv 2989 . . . . 5 (𝑓 = 𝐹 → (∀𝑥𝑋𝑦𝑋 ((𝑓‘(𝑥𝐺𝑦)) = ((𝑓𝑥)𝐽(𝑓𝑦)) ∧ (𝑓‘(𝑥𝐻𝑦)) = ((𝑓𝑥)𝐾(𝑓𝑦))) ↔ ∀𝑥𝑋𝑦𝑋 ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹𝑥)𝐾(𝐹𝑦)))))
3322, 32anbi12d 747 . . . 4 (𝑓 = 𝐹 → (((𝑓𝑈) = 𝑉 ∧ ∀𝑥𝑋𝑦𝑋 ((𝑓‘(𝑥𝐺𝑦)) = ((𝑓𝑥)𝐽(𝑓𝑦)) ∧ (𝑓‘(𝑥𝐻𝑦)) = ((𝑓𝑥)𝐾(𝑓𝑦)))) ↔ ((𝐹𝑈) = 𝑉 ∧ ∀𝑥𝑋𝑦𝑋 ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹𝑥)𝐾(𝐹𝑦))))))
3433elrab 3363 . . 3 (𝐹 ∈ {𝑓 ∈ (𝑌𝑚 𝑋) ∣ ((𝑓𝑈) = 𝑉 ∧ ∀𝑥𝑋𝑦𝑋 ((𝑓‘(𝑥𝐺𝑦)) = ((𝑓𝑥)𝐽(𝑓𝑦)) ∧ (𝑓‘(𝑥𝐻𝑦)) = ((𝑓𝑥)𝐾(𝑓𝑦))))} ↔ (𝐹 ∈ (𝑌𝑚 𝑋) ∧ ((𝐹𝑈) = 𝑉 ∧ ∀𝑥𝑋𝑦𝑋 ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹𝑥)𝐾(𝐹𝑦))))))
35 3anass 1042 . . 3 ((𝐹:𝑋𝑌 ∧ (𝐹𝑈) = 𝑉 ∧ ∀𝑥𝑋𝑦𝑋 ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹𝑥)𝐾(𝐹𝑦)))) ↔ (𝐹:𝑋𝑌 ∧ ((𝐹𝑈) = 𝑉 ∧ ∀𝑥𝑋𝑦𝑋 ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹𝑥)𝐾(𝐹𝑦))))))
3620, 34, 353bitr4i 292 . 2 (𝐹 ∈ {𝑓 ∈ (𝑌𝑚 𝑋) ∣ ((𝑓𝑈) = 𝑉 ∧ ∀𝑥𝑋𝑦𝑋 ((𝑓‘(𝑥𝐺𝑦)) = ((𝑓𝑥)𝐽(𝑓𝑦)) ∧ (𝑓‘(𝑥𝐻𝑦)) = ((𝑓𝑥)𝐾(𝑓𝑦))))} ↔ (𝐹:𝑋𝑌 ∧ (𝐹𝑈) = 𝑉 ∧ ∀𝑥𝑋𝑦𝑋 ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹𝑥)𝐾(𝐹𝑦)))))
3710, 36syl6bb 276 1 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝐹 ∈ (𝑅 RngHom 𝑆) ↔ (𝐹:𝑋𝑌 ∧ (𝐹𝑈) = 𝑉 ∧ ∀𝑥𝑋𝑦𝑋 ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹𝑥)𝐽(𝐹𝑦)) ∧ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹𝑥)𝐾(𝐹𝑦))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  {crab 2916  Vcvv 3200  ran crn 5115  wf 5884  cfv 5888  (class class class)co 6650  1st c1st 7166  2nd c2nd 7167  𝑚 cmap 7857  GIdcgi 27344  RingOpscrngo 33693   RngHom crnghom 33759
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-rngohom 33762
This theorem is referenced by:  rngohomf  33765  rngohom1  33767  rngohomadd  33768  rngohommul  33769  rngohomco  33773  rngoisocnv  33780
  Copyright terms: Public domain W3C validator