| Step | Hyp | Ref
| Expression |
| 1 | | rnghomval.1 |
. . . 4
⊢ 𝐺 = (1st ‘𝑅) |
| 2 | | rnghomval.2 |
. . . 4
⊢ 𝐻 = (2nd ‘𝑅) |
| 3 | | rnghomval.3 |
. . . 4
⊢ 𝑋 = ran 𝐺 |
| 4 | | rnghomval.4 |
. . . 4
⊢ 𝑈 = (GId‘𝐻) |
| 5 | | rnghomval.5 |
. . . 4
⊢ 𝐽 = (1st ‘𝑆) |
| 6 | | rnghomval.6 |
. . . 4
⊢ 𝐾 = (2nd ‘𝑆) |
| 7 | | rnghomval.7 |
. . . 4
⊢ 𝑌 = ran 𝐽 |
| 8 | | rnghomval.8 |
. . . 4
⊢ 𝑉 = (GId‘𝐾) |
| 9 | 1, 2, 3, 4, 5, 6, 7, 8 | rngohomval 33763 |
. . 3
⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝑅 RngHom 𝑆) = {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ((𝑓‘𝑈) = 𝑉 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑓‘(𝑥𝐺𝑦)) = ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) ∧ (𝑓‘(𝑥𝐻𝑦)) = ((𝑓‘𝑥)𝐾(𝑓‘𝑦))))}) |
| 10 | 9 | eleq2d 2687 |
. 2
⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝐹 ∈ (𝑅 RngHom 𝑆) ↔ 𝐹 ∈ {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ((𝑓‘𝑈) = 𝑉 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑓‘(𝑥𝐺𝑦)) = ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) ∧ (𝑓‘(𝑥𝐻𝑦)) = ((𝑓‘𝑥)𝐾(𝑓‘𝑦))))})) |
| 11 | | fvex 6201 |
. . . . . . . 8
⊢
(1st ‘𝑆) ∈ V |
| 12 | 5, 11 | eqeltri 2697 |
. . . . . . 7
⊢ 𝐽 ∈ V |
| 13 | 12 | rnex 7100 |
. . . . . 6
⊢ ran 𝐽 ∈ V |
| 14 | 7, 13 | eqeltri 2697 |
. . . . 5
⊢ 𝑌 ∈ V |
| 15 | | fvex 6201 |
. . . . . . . 8
⊢
(1st ‘𝑅) ∈ V |
| 16 | 1, 15 | eqeltri 2697 |
. . . . . . 7
⊢ 𝐺 ∈ V |
| 17 | 16 | rnex 7100 |
. . . . . 6
⊢ ran 𝐺 ∈ V |
| 18 | 3, 17 | eqeltri 2697 |
. . . . 5
⊢ 𝑋 ∈ V |
| 19 | 14, 18 | elmap 7886 |
. . . 4
⊢ (𝐹 ∈ (𝑌 ↑𝑚 𝑋) ↔ 𝐹:𝑋⟶𝑌) |
| 20 | 19 | anbi1i 731 |
. . 3
⊢ ((𝐹 ∈ (𝑌 ↑𝑚 𝑋) ∧ ((𝐹‘𝑈) = 𝑉 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) ∧ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹‘𝑥)𝐾(𝐹‘𝑦))))) ↔ (𝐹:𝑋⟶𝑌 ∧ ((𝐹‘𝑈) = 𝑉 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) ∧ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹‘𝑥)𝐾(𝐹‘𝑦)))))) |
| 21 | | fveq1 6190 |
. . . . . 6
⊢ (𝑓 = 𝐹 → (𝑓‘𝑈) = (𝐹‘𝑈)) |
| 22 | 21 | eqeq1d 2624 |
. . . . 5
⊢ (𝑓 = 𝐹 → ((𝑓‘𝑈) = 𝑉 ↔ (𝐹‘𝑈) = 𝑉)) |
| 23 | | fveq1 6190 |
. . . . . . . 8
⊢ (𝑓 = 𝐹 → (𝑓‘(𝑥𝐺𝑦)) = (𝐹‘(𝑥𝐺𝑦))) |
| 24 | | fveq1 6190 |
. . . . . . . . 9
⊢ (𝑓 = 𝐹 → (𝑓‘𝑥) = (𝐹‘𝑥)) |
| 25 | | fveq1 6190 |
. . . . . . . . 9
⊢ (𝑓 = 𝐹 → (𝑓‘𝑦) = (𝐹‘𝑦)) |
| 26 | 24, 25 | oveq12d 6668 |
. . . . . . . 8
⊢ (𝑓 = 𝐹 → ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) = ((𝐹‘𝑥)𝐽(𝐹‘𝑦))) |
| 27 | 23, 26 | eqeq12d 2637 |
. . . . . . 7
⊢ (𝑓 = 𝐹 → ((𝑓‘(𝑥𝐺𝑦)) = ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) ↔ (𝐹‘(𝑥𝐺𝑦)) = ((𝐹‘𝑥)𝐽(𝐹‘𝑦)))) |
| 28 | | fveq1 6190 |
. . . . . . . 8
⊢ (𝑓 = 𝐹 → (𝑓‘(𝑥𝐻𝑦)) = (𝐹‘(𝑥𝐻𝑦))) |
| 29 | 24, 25 | oveq12d 6668 |
. . . . . . . 8
⊢ (𝑓 = 𝐹 → ((𝑓‘𝑥)𝐾(𝑓‘𝑦)) = ((𝐹‘𝑥)𝐾(𝐹‘𝑦))) |
| 30 | 28, 29 | eqeq12d 2637 |
. . . . . . 7
⊢ (𝑓 = 𝐹 → ((𝑓‘(𝑥𝐻𝑦)) = ((𝑓‘𝑥)𝐾(𝑓‘𝑦)) ↔ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹‘𝑥)𝐾(𝐹‘𝑦)))) |
| 31 | 27, 30 | anbi12d 747 |
. . . . . 6
⊢ (𝑓 = 𝐹 → (((𝑓‘(𝑥𝐺𝑦)) = ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) ∧ (𝑓‘(𝑥𝐻𝑦)) = ((𝑓‘𝑥)𝐾(𝑓‘𝑦))) ↔ ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) ∧ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹‘𝑥)𝐾(𝐹‘𝑦))))) |
| 32 | 31 | 2ralbidv 2989 |
. . . . 5
⊢ (𝑓 = 𝐹 → (∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑓‘(𝑥𝐺𝑦)) = ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) ∧ (𝑓‘(𝑥𝐻𝑦)) = ((𝑓‘𝑥)𝐾(𝑓‘𝑦))) ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) ∧ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹‘𝑥)𝐾(𝐹‘𝑦))))) |
| 33 | 22, 32 | anbi12d 747 |
. . . 4
⊢ (𝑓 = 𝐹 → (((𝑓‘𝑈) = 𝑉 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑓‘(𝑥𝐺𝑦)) = ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) ∧ (𝑓‘(𝑥𝐻𝑦)) = ((𝑓‘𝑥)𝐾(𝑓‘𝑦)))) ↔ ((𝐹‘𝑈) = 𝑉 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) ∧ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹‘𝑥)𝐾(𝐹‘𝑦)))))) |
| 34 | 33 | elrab 3363 |
. . 3
⊢ (𝐹 ∈ {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ((𝑓‘𝑈) = 𝑉 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑓‘(𝑥𝐺𝑦)) = ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) ∧ (𝑓‘(𝑥𝐻𝑦)) = ((𝑓‘𝑥)𝐾(𝑓‘𝑦))))} ↔ (𝐹 ∈ (𝑌 ↑𝑚 𝑋) ∧ ((𝐹‘𝑈) = 𝑉 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) ∧ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹‘𝑥)𝐾(𝐹‘𝑦)))))) |
| 35 | | 3anass 1042 |
. . 3
⊢ ((𝐹:𝑋⟶𝑌 ∧ (𝐹‘𝑈) = 𝑉 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) ∧ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹‘𝑥)𝐾(𝐹‘𝑦)))) ↔ (𝐹:𝑋⟶𝑌 ∧ ((𝐹‘𝑈) = 𝑉 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) ∧ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹‘𝑥)𝐾(𝐹‘𝑦)))))) |
| 36 | 20, 34, 35 | 3bitr4i 292 |
. 2
⊢ (𝐹 ∈ {𝑓 ∈ (𝑌 ↑𝑚 𝑋) ∣ ((𝑓‘𝑈) = 𝑉 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝑓‘(𝑥𝐺𝑦)) = ((𝑓‘𝑥)𝐽(𝑓‘𝑦)) ∧ (𝑓‘(𝑥𝐻𝑦)) = ((𝑓‘𝑥)𝐾(𝑓‘𝑦))))} ↔ (𝐹:𝑋⟶𝑌 ∧ (𝐹‘𝑈) = 𝑉 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) ∧ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹‘𝑥)𝐾(𝐹‘𝑦))))) |
| 37 | 10, 36 | syl6bb 276 |
1
⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝐹 ∈ (𝑅 RngHom 𝑆) ↔ (𝐹:𝑋⟶𝑌 ∧ (𝐹‘𝑈) = 𝑉 ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑋 ((𝐹‘(𝑥𝐺𝑦)) = ((𝐹‘𝑥)𝐽(𝐹‘𝑦)) ∧ (𝐹‘(𝑥𝐻𝑦)) = ((𝐹‘𝑥)𝐾(𝐹‘𝑦)))))) |