Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngoisocnv Structured version   Visualization version   GIF version

Theorem rngoisocnv 33780
Description: The inverse of a ring isomorphism is a ring isomorphism. (Contributed by Jeff Madsen, 16-Jun-2011.)
Assertion
Ref Expression
rngoisocnv ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → 𝐹 ∈ (𝑆 RngIso 𝑅))

Proof of Theorem rngoisocnv
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1ocnv 6149 . . . . . . . 8 (𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆) → 𝐹:ran (1st𝑆)–1-1-onto→ran (1st𝑅))
2 f1of 6137 . . . . . . . 8 (𝐹:ran (1st𝑆)–1-1-onto→ran (1st𝑅) → 𝐹:ran (1st𝑆)⟶ran (1st𝑅))
31, 2syl 17 . . . . . . 7 (𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆) → 𝐹:ran (1st𝑆)⟶ran (1st𝑅))
43ad2antll 765 . . . . . 6 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆))) → 𝐹:ran (1st𝑆)⟶ran (1st𝑅))
5 eqid 2622 . . . . . . . . . 10 (2nd𝑅) = (2nd𝑅)
6 eqid 2622 . . . . . . . . . 10 (GId‘(2nd𝑅)) = (GId‘(2nd𝑅))
7 eqid 2622 . . . . . . . . . 10 (2nd𝑆) = (2nd𝑆)
8 eqid 2622 . . . . . . . . . 10 (GId‘(2nd𝑆)) = (GId‘(2nd𝑆))
95, 6, 7, 8rngohom1 33767 . . . . . . . . 9 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → (𝐹‘(GId‘(2nd𝑅))) = (GId‘(2nd𝑆)))
1093expa 1265 . . . . . . . 8 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → (𝐹‘(GId‘(2nd𝑅))) = (GId‘(2nd𝑆)))
1110adantrr 753 . . . . . . 7 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆))) → (𝐹‘(GId‘(2nd𝑅))) = (GId‘(2nd𝑆)))
12 eqid 2622 . . . . . . . . . . 11 ran (1st𝑅) = ran (1st𝑅)
1312, 5, 6rngo1cl 33738 . . . . . . . . . 10 (𝑅 ∈ RingOps → (GId‘(2nd𝑅)) ∈ ran (1st𝑅))
14 f1ocnvfv 6534 . . . . . . . . . 10 ((𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆) ∧ (GId‘(2nd𝑅)) ∈ ran (1st𝑅)) → ((𝐹‘(GId‘(2nd𝑅))) = (GId‘(2nd𝑆)) → (𝐹‘(GId‘(2nd𝑆))) = (GId‘(2nd𝑅))))
1513, 14sylan2 491 . . . . . . . . 9 ((𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆) ∧ 𝑅 ∈ RingOps) → ((𝐹‘(GId‘(2nd𝑅))) = (GId‘(2nd𝑆)) → (𝐹‘(GId‘(2nd𝑆))) = (GId‘(2nd𝑅))))
1615ancoms 469 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆)) → ((𝐹‘(GId‘(2nd𝑅))) = (GId‘(2nd𝑆)) → (𝐹‘(GId‘(2nd𝑆))) = (GId‘(2nd𝑅))))
1716ad2ant2rl 785 . . . . . . 7 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆))) → ((𝐹‘(GId‘(2nd𝑅))) = (GId‘(2nd𝑆)) → (𝐹‘(GId‘(2nd𝑆))) = (GId‘(2nd𝑅))))
1811, 17mpd 15 . . . . . 6 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆))) → (𝐹‘(GId‘(2nd𝑆))) = (GId‘(2nd𝑅)))
19 f1ocnvfv2 6533 . . . . . . . . . . . . . 14 ((𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆) ∧ 𝑥 ∈ ran (1st𝑆)) → (𝐹‘(𝐹𝑥)) = 𝑥)
20 f1ocnvfv2 6533 . . . . . . . . . . . . . 14 ((𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆)) → (𝐹‘(𝐹𝑦)) = 𝑦)
2119, 20anim12da 33506 . . . . . . . . . . . . 13 ((𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆) ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆))) → ((𝐹‘(𝐹𝑥)) = 𝑥 ∧ (𝐹‘(𝐹𝑦)) = 𝑦))
22 oveq12 6659 . . . . . . . . . . . . 13 (((𝐹‘(𝐹𝑥)) = 𝑥 ∧ (𝐹‘(𝐹𝑦)) = 𝑦) → ((𝐹‘(𝐹𝑥))(1st𝑆)(𝐹‘(𝐹𝑦))) = (𝑥(1st𝑆)𝑦))
2321, 22syl 17 . . . . . . . . . . . 12 ((𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆) ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆))) → ((𝐹‘(𝐹𝑥))(1st𝑆)(𝐹‘(𝐹𝑦))) = (𝑥(1st𝑆)𝑦))
2423adantll 750 . . . . . . . . . . 11 (((𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆)) ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆))) → ((𝐹‘(𝐹𝑥))(1st𝑆)(𝐹‘(𝐹𝑦))) = (𝑥(1st𝑆)𝑦))
2524adantll 750 . . . . . . . . . 10 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆))) ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆))) → ((𝐹‘(𝐹𝑥))(1st𝑆)(𝐹‘(𝐹𝑦))) = (𝑥(1st𝑆)𝑦))
26 f1ocnvdm 6540 . . . . . . . . . . . . . . . 16 ((𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆) ∧ 𝑥 ∈ ran (1st𝑆)) → (𝐹𝑥) ∈ ran (1st𝑅))
27 f1ocnvdm 6540 . . . . . . . . . . . . . . . 16 ((𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆)) → (𝐹𝑦) ∈ ran (1st𝑅))
2826, 27anim12da 33506 . . . . . . . . . . . . . . 15 ((𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆) ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆))) → ((𝐹𝑥) ∈ ran (1st𝑅) ∧ (𝐹𝑦) ∈ ran (1st𝑅)))
29 eqid 2622 . . . . . . . . . . . . . . . 16 (1st𝑅) = (1st𝑅)
30 eqid 2622 . . . . . . . . . . . . . . . 16 (1st𝑆) = (1st𝑆)
3129, 12, 30rngohomadd 33768 . . . . . . . . . . . . . . 15 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ ((𝐹𝑥) ∈ ran (1st𝑅) ∧ (𝐹𝑦) ∈ ran (1st𝑅))) → (𝐹‘((𝐹𝑥)(1st𝑅)(𝐹𝑦))) = ((𝐹‘(𝐹𝑥))(1st𝑆)(𝐹‘(𝐹𝑦))))
3228, 31sylan2 491 . . . . . . . . . . . . . 14 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆) ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆)))) → (𝐹‘((𝐹𝑥)(1st𝑅)(𝐹𝑦))) = ((𝐹‘(𝐹𝑥))(1st𝑆)(𝐹‘(𝐹𝑦))))
3332exp32 631 . . . . . . . . . . . . 13 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → (𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆) → ((𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆)) → (𝐹‘((𝐹𝑥)(1st𝑅)(𝐹𝑦))) = ((𝐹‘(𝐹𝑥))(1st𝑆)(𝐹‘(𝐹𝑦))))))
34333expa 1265 . . . . . . . . . . . 12 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → (𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆) → ((𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆)) → (𝐹‘((𝐹𝑥)(1st𝑅)(𝐹𝑦))) = ((𝐹‘(𝐹𝑥))(1st𝑆)(𝐹‘(𝐹𝑦))))))
3534impr 649 . . . . . . . . . . 11 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆))) → ((𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆)) → (𝐹‘((𝐹𝑥)(1st𝑅)(𝐹𝑦))) = ((𝐹‘(𝐹𝑥))(1st𝑆)(𝐹‘(𝐹𝑦)))))
3635imp 445 . . . . . . . . . 10 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆))) ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆))) → (𝐹‘((𝐹𝑥)(1st𝑅)(𝐹𝑦))) = ((𝐹‘(𝐹𝑥))(1st𝑆)(𝐹‘(𝐹𝑦))))
37 eqid 2622 . . . . . . . . . . . . . . . 16 ran (1st𝑆) = ran (1st𝑆)
3830, 37rngogcl 33711 . . . . . . . . . . . . . . 15 ((𝑆 ∈ RingOps ∧ 𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆)) → (𝑥(1st𝑆)𝑦) ∈ ran (1st𝑆))
39383expb 1266 . . . . . . . . . . . . . 14 ((𝑆 ∈ RingOps ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆))) → (𝑥(1st𝑆)𝑦) ∈ ran (1st𝑆))
40 f1ocnvfv2 6533 . . . . . . . . . . . . . . 15 ((𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆) ∧ (𝑥(1st𝑆)𝑦) ∈ ran (1st𝑆)) → (𝐹‘(𝐹‘(𝑥(1st𝑆)𝑦))) = (𝑥(1st𝑆)𝑦))
4140ancoms 469 . . . . . . . . . . . . . 14 (((𝑥(1st𝑆)𝑦) ∈ ran (1st𝑆) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆)) → (𝐹‘(𝐹‘(𝑥(1st𝑆)𝑦))) = (𝑥(1st𝑆)𝑦))
4239, 41sylan 488 . . . . . . . . . . . . 13 (((𝑆 ∈ RingOps ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆))) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆)) → (𝐹‘(𝐹‘(𝑥(1st𝑆)𝑦))) = (𝑥(1st𝑆)𝑦))
4342an32s 846 . . . . . . . . . . . 12 (((𝑆 ∈ RingOps ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆)) ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆))) → (𝐹‘(𝐹‘(𝑥(1st𝑆)𝑦))) = (𝑥(1st𝑆)𝑦))
4443adantlll 754 . . . . . . . . . . 11 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆)) ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆))) → (𝐹‘(𝐹‘(𝑥(1st𝑆)𝑦))) = (𝑥(1st𝑆)𝑦))
4544adantlrl 756 . . . . . . . . . 10 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆))) ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆))) → (𝐹‘(𝐹‘(𝑥(1st𝑆)𝑦))) = (𝑥(1st𝑆)𝑦))
4625, 36, 453eqtr4rd 2667 . . . . . . . . 9 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆))) ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆))) → (𝐹‘(𝐹‘(𝑥(1st𝑆)𝑦))) = (𝐹‘((𝐹𝑥)(1st𝑅)(𝐹𝑦))))
47 f1of1 6136 . . . . . . . . . . . 12 (𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆) → 𝐹:ran (1st𝑅)–1-1→ran (1st𝑆))
4847ad2antlr 763 . . . . . . . . . . 11 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆)) ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆))) → 𝐹:ran (1st𝑅)–1-1→ran (1st𝑆))
49 f1ocnvdm 6540 . . . . . . . . . . . . . . 15 ((𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆) ∧ (𝑥(1st𝑆)𝑦) ∈ ran (1st𝑆)) → (𝐹‘(𝑥(1st𝑆)𝑦)) ∈ ran (1st𝑅))
5049ancoms 469 . . . . . . . . . . . . . 14 (((𝑥(1st𝑆)𝑦) ∈ ran (1st𝑆) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆)) → (𝐹‘(𝑥(1st𝑆)𝑦)) ∈ ran (1st𝑅))
5139, 50sylan 488 . . . . . . . . . . . . 13 (((𝑆 ∈ RingOps ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆))) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆)) → (𝐹‘(𝑥(1st𝑆)𝑦)) ∈ ran (1st𝑅))
5251an32s 846 . . . . . . . . . . . 12 (((𝑆 ∈ RingOps ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆)) ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆))) → (𝐹‘(𝑥(1st𝑆)𝑦)) ∈ ran (1st𝑅))
5352adantlll 754 . . . . . . . . . . 11 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆)) ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆))) → (𝐹‘(𝑥(1st𝑆)𝑦)) ∈ ran (1st𝑅))
5429, 12rngogcl 33711 . . . . . . . . . . . . . . 15 ((𝑅 ∈ RingOps ∧ (𝐹𝑥) ∈ ran (1st𝑅) ∧ (𝐹𝑦) ∈ ran (1st𝑅)) → ((𝐹𝑥)(1st𝑅)(𝐹𝑦)) ∈ ran (1st𝑅))
55543expb 1266 . . . . . . . . . . . . . 14 ((𝑅 ∈ RingOps ∧ ((𝐹𝑥) ∈ ran (1st𝑅) ∧ (𝐹𝑦) ∈ ran (1st𝑅))) → ((𝐹𝑥)(1st𝑅)(𝐹𝑦)) ∈ ran (1st𝑅))
5628, 55sylan2 491 . . . . . . . . . . . . 13 ((𝑅 ∈ RingOps ∧ (𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆) ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆)))) → ((𝐹𝑥)(1st𝑅)(𝐹𝑦)) ∈ ran (1st𝑅))
5756anassrs 680 . . . . . . . . . . . 12 (((𝑅 ∈ RingOps ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆)) ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆))) → ((𝐹𝑥)(1st𝑅)(𝐹𝑦)) ∈ ran (1st𝑅))
5857adantllr 755 . . . . . . . . . . 11 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆)) ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆))) → ((𝐹𝑥)(1st𝑅)(𝐹𝑦)) ∈ ran (1st𝑅))
59 f1fveq 6519 . . . . . . . . . . 11 ((𝐹:ran (1st𝑅)–1-1→ran (1st𝑆) ∧ ((𝐹‘(𝑥(1st𝑆)𝑦)) ∈ ran (1st𝑅) ∧ ((𝐹𝑥)(1st𝑅)(𝐹𝑦)) ∈ ran (1st𝑅))) → ((𝐹‘(𝐹‘(𝑥(1st𝑆)𝑦))) = (𝐹‘((𝐹𝑥)(1st𝑅)(𝐹𝑦))) ↔ (𝐹‘(𝑥(1st𝑆)𝑦)) = ((𝐹𝑥)(1st𝑅)(𝐹𝑦))))
6048, 53, 58, 59syl12anc 1324 . . . . . . . . . 10 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆)) ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆))) → ((𝐹‘(𝐹‘(𝑥(1st𝑆)𝑦))) = (𝐹‘((𝐹𝑥)(1st𝑅)(𝐹𝑦))) ↔ (𝐹‘(𝑥(1st𝑆)𝑦)) = ((𝐹𝑥)(1st𝑅)(𝐹𝑦))))
6160adantlrl 756 . . . . . . . . 9 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆))) ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆))) → ((𝐹‘(𝐹‘(𝑥(1st𝑆)𝑦))) = (𝐹‘((𝐹𝑥)(1st𝑅)(𝐹𝑦))) ↔ (𝐹‘(𝑥(1st𝑆)𝑦)) = ((𝐹𝑥)(1st𝑅)(𝐹𝑦))))
6246, 61mpbid 222 . . . . . . . 8 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆))) ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆))) → (𝐹‘(𝑥(1st𝑆)𝑦)) = ((𝐹𝑥)(1st𝑅)(𝐹𝑦)))
63 oveq12 6659 . . . . . . . . . . . . 13 (((𝐹‘(𝐹𝑥)) = 𝑥 ∧ (𝐹‘(𝐹𝑦)) = 𝑦) → ((𝐹‘(𝐹𝑥))(2nd𝑆)(𝐹‘(𝐹𝑦))) = (𝑥(2nd𝑆)𝑦))
6421, 63syl 17 . . . . . . . . . . . 12 ((𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆) ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆))) → ((𝐹‘(𝐹𝑥))(2nd𝑆)(𝐹‘(𝐹𝑦))) = (𝑥(2nd𝑆)𝑦))
6564adantll 750 . . . . . . . . . . 11 (((𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆)) ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆))) → ((𝐹‘(𝐹𝑥))(2nd𝑆)(𝐹‘(𝐹𝑦))) = (𝑥(2nd𝑆)𝑦))
6665adantll 750 . . . . . . . . . 10 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆))) ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆))) → ((𝐹‘(𝐹𝑥))(2nd𝑆)(𝐹‘(𝐹𝑦))) = (𝑥(2nd𝑆)𝑦))
6729, 12, 5, 7rngohommul 33769 . . . . . . . . . . . . . . 15 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ ((𝐹𝑥) ∈ ran (1st𝑅) ∧ (𝐹𝑦) ∈ ran (1st𝑅))) → (𝐹‘((𝐹𝑥)(2nd𝑅)(𝐹𝑦))) = ((𝐹‘(𝐹𝑥))(2nd𝑆)(𝐹‘(𝐹𝑦))))
6828, 67sylan2 491 . . . . . . . . . . . . . 14 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) ∧ (𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆) ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆)))) → (𝐹‘((𝐹𝑥)(2nd𝑅)(𝐹𝑦))) = ((𝐹‘(𝐹𝑥))(2nd𝑆)(𝐹‘(𝐹𝑦))))
6968exp32 631 . . . . . . . . . . . . 13 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → (𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆) → ((𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆)) → (𝐹‘((𝐹𝑥)(2nd𝑅)(𝐹𝑦))) = ((𝐹‘(𝐹𝑥))(2nd𝑆)(𝐹‘(𝐹𝑦))))))
70693expa 1265 . . . . . . . . . . . 12 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RngHom 𝑆)) → (𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆) → ((𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆)) → (𝐹‘((𝐹𝑥)(2nd𝑅)(𝐹𝑦))) = ((𝐹‘(𝐹𝑥))(2nd𝑆)(𝐹‘(𝐹𝑦))))))
7170impr 649 . . . . . . . . . . 11 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆))) → ((𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆)) → (𝐹‘((𝐹𝑥)(2nd𝑅)(𝐹𝑦))) = ((𝐹‘(𝐹𝑥))(2nd𝑆)(𝐹‘(𝐹𝑦)))))
7271imp 445 . . . . . . . . . 10 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆))) ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆))) → (𝐹‘((𝐹𝑥)(2nd𝑅)(𝐹𝑦))) = ((𝐹‘(𝐹𝑥))(2nd𝑆)(𝐹‘(𝐹𝑦))))
7330, 7, 37rngocl 33700 . . . . . . . . . . . . . . 15 ((𝑆 ∈ RingOps ∧ 𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆)) → (𝑥(2nd𝑆)𝑦) ∈ ran (1st𝑆))
74733expb 1266 . . . . . . . . . . . . . 14 ((𝑆 ∈ RingOps ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆))) → (𝑥(2nd𝑆)𝑦) ∈ ran (1st𝑆))
75 f1ocnvfv2 6533 . . . . . . . . . . . . . . 15 ((𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆) ∧ (𝑥(2nd𝑆)𝑦) ∈ ran (1st𝑆)) → (𝐹‘(𝐹‘(𝑥(2nd𝑆)𝑦))) = (𝑥(2nd𝑆)𝑦))
7675ancoms 469 . . . . . . . . . . . . . 14 (((𝑥(2nd𝑆)𝑦) ∈ ran (1st𝑆) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆)) → (𝐹‘(𝐹‘(𝑥(2nd𝑆)𝑦))) = (𝑥(2nd𝑆)𝑦))
7774, 76sylan 488 . . . . . . . . . . . . 13 (((𝑆 ∈ RingOps ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆))) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆)) → (𝐹‘(𝐹‘(𝑥(2nd𝑆)𝑦))) = (𝑥(2nd𝑆)𝑦))
7877an32s 846 . . . . . . . . . . . 12 (((𝑆 ∈ RingOps ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆)) ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆))) → (𝐹‘(𝐹‘(𝑥(2nd𝑆)𝑦))) = (𝑥(2nd𝑆)𝑦))
7978adantlll 754 . . . . . . . . . . 11 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆)) ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆))) → (𝐹‘(𝐹‘(𝑥(2nd𝑆)𝑦))) = (𝑥(2nd𝑆)𝑦))
8079adantlrl 756 . . . . . . . . . 10 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆))) ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆))) → (𝐹‘(𝐹‘(𝑥(2nd𝑆)𝑦))) = (𝑥(2nd𝑆)𝑦))
8166, 72, 803eqtr4rd 2667 . . . . . . . . 9 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆))) ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆))) → (𝐹‘(𝐹‘(𝑥(2nd𝑆)𝑦))) = (𝐹‘((𝐹𝑥)(2nd𝑅)(𝐹𝑦))))
82 f1ocnvdm 6540 . . . . . . . . . . . . . . 15 ((𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆) ∧ (𝑥(2nd𝑆)𝑦) ∈ ran (1st𝑆)) → (𝐹‘(𝑥(2nd𝑆)𝑦)) ∈ ran (1st𝑅))
8382ancoms 469 . . . . . . . . . . . . . 14 (((𝑥(2nd𝑆)𝑦) ∈ ran (1st𝑆) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆)) → (𝐹‘(𝑥(2nd𝑆)𝑦)) ∈ ran (1st𝑅))
8474, 83sylan 488 . . . . . . . . . . . . 13 (((𝑆 ∈ RingOps ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆))) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆)) → (𝐹‘(𝑥(2nd𝑆)𝑦)) ∈ ran (1st𝑅))
8584an32s 846 . . . . . . . . . . . 12 (((𝑆 ∈ RingOps ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆)) ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆))) → (𝐹‘(𝑥(2nd𝑆)𝑦)) ∈ ran (1st𝑅))
8685adantlll 754 . . . . . . . . . . 11 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆)) ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆))) → (𝐹‘(𝑥(2nd𝑆)𝑦)) ∈ ran (1st𝑅))
8729, 5, 12rngocl 33700 . . . . . . . . . . . . . . 15 ((𝑅 ∈ RingOps ∧ (𝐹𝑥) ∈ ran (1st𝑅) ∧ (𝐹𝑦) ∈ ran (1st𝑅)) → ((𝐹𝑥)(2nd𝑅)(𝐹𝑦)) ∈ ran (1st𝑅))
88873expb 1266 . . . . . . . . . . . . . 14 ((𝑅 ∈ RingOps ∧ ((𝐹𝑥) ∈ ran (1st𝑅) ∧ (𝐹𝑦) ∈ ran (1st𝑅))) → ((𝐹𝑥)(2nd𝑅)(𝐹𝑦)) ∈ ran (1st𝑅))
8928, 88sylan2 491 . . . . . . . . . . . . 13 ((𝑅 ∈ RingOps ∧ (𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆) ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆)))) → ((𝐹𝑥)(2nd𝑅)(𝐹𝑦)) ∈ ran (1st𝑅))
9089anassrs 680 . . . . . . . . . . . 12 (((𝑅 ∈ RingOps ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆)) ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆))) → ((𝐹𝑥)(2nd𝑅)(𝐹𝑦)) ∈ ran (1st𝑅))
9190adantllr 755 . . . . . . . . . . 11 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆)) ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆))) → ((𝐹𝑥)(2nd𝑅)(𝐹𝑦)) ∈ ran (1st𝑅))
92 f1fveq 6519 . . . . . . . . . . 11 ((𝐹:ran (1st𝑅)–1-1→ran (1st𝑆) ∧ ((𝐹‘(𝑥(2nd𝑆)𝑦)) ∈ ran (1st𝑅) ∧ ((𝐹𝑥)(2nd𝑅)(𝐹𝑦)) ∈ ran (1st𝑅))) → ((𝐹‘(𝐹‘(𝑥(2nd𝑆)𝑦))) = (𝐹‘((𝐹𝑥)(2nd𝑅)(𝐹𝑦))) ↔ (𝐹‘(𝑥(2nd𝑆)𝑦)) = ((𝐹𝑥)(2nd𝑅)(𝐹𝑦))))
9348, 86, 91, 92syl12anc 1324 . . . . . . . . . 10 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆)) ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆))) → ((𝐹‘(𝐹‘(𝑥(2nd𝑆)𝑦))) = (𝐹‘((𝐹𝑥)(2nd𝑅)(𝐹𝑦))) ↔ (𝐹‘(𝑥(2nd𝑆)𝑦)) = ((𝐹𝑥)(2nd𝑅)(𝐹𝑦))))
9493adantlrl 756 . . . . . . . . 9 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆))) ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆))) → ((𝐹‘(𝐹‘(𝑥(2nd𝑆)𝑦))) = (𝐹‘((𝐹𝑥)(2nd𝑅)(𝐹𝑦))) ↔ (𝐹‘(𝑥(2nd𝑆)𝑦)) = ((𝐹𝑥)(2nd𝑅)(𝐹𝑦))))
9581, 94mpbid 222 . . . . . . . 8 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆))) ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆))) → (𝐹‘(𝑥(2nd𝑆)𝑦)) = ((𝐹𝑥)(2nd𝑅)(𝐹𝑦)))
9662, 95jca 554 . . . . . . 7 ((((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆))) ∧ (𝑥 ∈ ran (1st𝑆) ∧ 𝑦 ∈ ran (1st𝑆))) → ((𝐹‘(𝑥(1st𝑆)𝑦)) = ((𝐹𝑥)(1st𝑅)(𝐹𝑦)) ∧ (𝐹‘(𝑥(2nd𝑆)𝑦)) = ((𝐹𝑥)(2nd𝑅)(𝐹𝑦))))
9796ralrimivva 2971 . . . . . 6 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆))) → ∀𝑥 ∈ ran (1st𝑆)∀𝑦 ∈ ran (1st𝑆)((𝐹‘(𝑥(1st𝑆)𝑦)) = ((𝐹𝑥)(1st𝑅)(𝐹𝑦)) ∧ (𝐹‘(𝑥(2nd𝑆)𝑦)) = ((𝐹𝑥)(2nd𝑅)(𝐹𝑦))))
9830, 7, 37, 8, 29, 5, 12, 6isrngohom 33764 . . . . . . . 8 ((𝑆 ∈ RingOps ∧ 𝑅 ∈ RingOps) → (𝐹 ∈ (𝑆 RngHom 𝑅) ↔ (𝐹:ran (1st𝑆)⟶ran (1st𝑅) ∧ (𝐹‘(GId‘(2nd𝑆))) = (GId‘(2nd𝑅)) ∧ ∀𝑥 ∈ ran (1st𝑆)∀𝑦 ∈ ran (1st𝑆)((𝐹‘(𝑥(1st𝑆)𝑦)) = ((𝐹𝑥)(1st𝑅)(𝐹𝑦)) ∧ (𝐹‘(𝑥(2nd𝑆)𝑦)) = ((𝐹𝑥)(2nd𝑅)(𝐹𝑦))))))
9998ancoms 469 . . . . . . 7 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝐹 ∈ (𝑆 RngHom 𝑅) ↔ (𝐹:ran (1st𝑆)⟶ran (1st𝑅) ∧ (𝐹‘(GId‘(2nd𝑆))) = (GId‘(2nd𝑅)) ∧ ∀𝑥 ∈ ran (1st𝑆)∀𝑦 ∈ ran (1st𝑆)((𝐹‘(𝑥(1st𝑆)𝑦)) = ((𝐹𝑥)(1st𝑅)(𝐹𝑦)) ∧ (𝐹‘(𝑥(2nd𝑆)𝑦)) = ((𝐹𝑥)(2nd𝑅)(𝐹𝑦))))))
10099adantr 481 . . . . . 6 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆))) → (𝐹 ∈ (𝑆 RngHom 𝑅) ↔ (𝐹:ran (1st𝑆)⟶ran (1st𝑅) ∧ (𝐹‘(GId‘(2nd𝑆))) = (GId‘(2nd𝑅)) ∧ ∀𝑥 ∈ ran (1st𝑆)∀𝑦 ∈ ran (1st𝑆)((𝐹‘(𝑥(1st𝑆)𝑦)) = ((𝐹𝑥)(1st𝑅)(𝐹𝑦)) ∧ (𝐹‘(𝑥(2nd𝑆)𝑦)) = ((𝐹𝑥)(2nd𝑅)(𝐹𝑦))))))
1014, 18, 97, 100mpbir3and 1245 . . . . 5 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆))) → 𝐹 ∈ (𝑆 RngHom 𝑅))
1021ad2antll 765 . . . . 5 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆))) → 𝐹:ran (1st𝑆)–1-1-onto→ran (1st𝑅))
103101, 102jca 554 . . . 4 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆))) → (𝐹 ∈ (𝑆 RngHom 𝑅) ∧ 𝐹:ran (1st𝑆)–1-1-onto→ran (1st𝑅)))
104103ex 450 . . 3 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → ((𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆)) → (𝐹 ∈ (𝑆 RngHom 𝑅) ∧ 𝐹:ran (1st𝑆)–1-1-onto→ran (1st𝑅))))
10529, 12, 30, 37isrngoiso 33777 . . 3 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝐹 ∈ (𝑅 RngIso 𝑆) ↔ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆))))
10630, 37, 29, 12isrngoiso 33777 . . . 4 ((𝑆 ∈ RingOps ∧ 𝑅 ∈ RingOps) → (𝐹 ∈ (𝑆 RngIso 𝑅) ↔ (𝐹 ∈ (𝑆 RngHom 𝑅) ∧ 𝐹:ran (1st𝑆)–1-1-onto→ran (1st𝑅))))
107106ancoms 469 . . 3 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝐹 ∈ (𝑆 RngIso 𝑅) ↔ (𝐹 ∈ (𝑆 RngHom 𝑅) ∧ 𝐹:ran (1st𝑆)–1-1-onto→ran (1st𝑅))))
108104, 105, 1073imtr4d 283 . 2 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝐹 ∈ (𝑅 RngIso 𝑆) → 𝐹 ∈ (𝑆 RngIso 𝑅)))
1091083impia 1261 1 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → 𝐹 ∈ (𝑆 RngIso 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  ccnv 5113  ran crn 5115  wf 5884  1-1wf1 5885  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  1st c1st 7166  2nd c2nd 7167  GIdcgi 27344  RingOpscrngo 33693   RngHom crnghom 33759   RngIso crngiso 33760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859  df-grpo 27347  df-gid 27348  df-ablo 27399  df-ass 33642  df-exid 33644  df-mgmOLD 33648  df-sgrOLD 33660  df-mndo 33666  df-rngo 33694  df-rngohom 33762  df-rngoiso 33775
This theorem is referenced by:  riscer  33787
  Copyright terms: Public domain W3C validator