![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > issect | Structured version Visualization version GIF version |
Description: The property "𝐹 is a section of 𝐺". (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
issect.b | ⊢ 𝐵 = (Base‘𝐶) |
issect.h | ⊢ 𝐻 = (Hom ‘𝐶) |
issect.o | ⊢ · = (comp‘𝐶) |
issect.i | ⊢ 1 = (Id‘𝐶) |
issect.s | ⊢ 𝑆 = (Sect‘𝐶) |
issect.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
issect.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
issect.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
issect | ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋) ∧ (𝐺(〈𝑋, 𝑌〉 · 𝑋)𝐹) = ( 1 ‘𝑋)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issect.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
2 | issect.h | . . . 4 ⊢ 𝐻 = (Hom ‘𝐶) | |
3 | issect.o | . . . 4 ⊢ · = (comp‘𝐶) | |
4 | issect.i | . . . 4 ⊢ 1 = (Id‘𝐶) | |
5 | issect.s | . . . 4 ⊢ 𝑆 = (Sect‘𝐶) | |
6 | issect.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
7 | issect.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
8 | issect.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | sectfval 16411 | . . 3 ⊢ (𝜑 → (𝑋𝑆𝑌) = {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(〈𝑋, 𝑌〉 · 𝑋)𝑓) = ( 1 ‘𝑋))}) |
10 | 9 | breqd 4664 | . 2 ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ 𝐹{〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(〈𝑋, 𝑌〉 · 𝑋)𝑓) = ( 1 ‘𝑋))}𝐺)) |
11 | oveq12 6659 | . . . . . 6 ⊢ ((𝑔 = 𝐺 ∧ 𝑓 = 𝐹) → (𝑔(〈𝑋, 𝑌〉 · 𝑋)𝑓) = (𝐺(〈𝑋, 𝑌〉 · 𝑋)𝐹)) | |
12 | 11 | ancoms 469 | . . . . 5 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (𝑔(〈𝑋, 𝑌〉 · 𝑋)𝑓) = (𝐺(〈𝑋, 𝑌〉 · 𝑋)𝐹)) |
13 | 12 | eqeq1d 2624 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → ((𝑔(〈𝑋, 𝑌〉 · 𝑋)𝑓) = ( 1 ‘𝑋) ↔ (𝐺(〈𝑋, 𝑌〉 · 𝑋)𝐹) = ( 1 ‘𝑋))) |
14 | eqid 2622 | . . . 4 ⊢ {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(〈𝑋, 𝑌〉 · 𝑋)𝑓) = ( 1 ‘𝑋))} = {〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(〈𝑋, 𝑌〉 · 𝑋)𝑓) = ( 1 ‘𝑋))} | |
15 | 13, 14 | brab2a 5194 | . . 3 ⊢ (𝐹{〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(〈𝑋, 𝑌〉 · 𝑋)𝑓) = ( 1 ‘𝑋))}𝐺 ↔ ((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋)) ∧ (𝐺(〈𝑋, 𝑌〉 · 𝑋)𝐹) = ( 1 ‘𝑋))) |
16 | df-3an 1039 | . . 3 ⊢ ((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋) ∧ (𝐺(〈𝑋, 𝑌〉 · 𝑋)𝐹) = ( 1 ‘𝑋)) ↔ ((𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋)) ∧ (𝐺(〈𝑋, 𝑌〉 · 𝑋)𝐹) = ( 1 ‘𝑋))) | |
17 | 15, 16 | bitr4i 267 | . 2 ⊢ (𝐹{〈𝑓, 𝑔〉 ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(〈𝑋, 𝑌〉 · 𝑋)𝑓) = ( 1 ‘𝑋))}𝐺 ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋) ∧ (𝐺(〈𝑋, 𝑌〉 · 𝑋)𝐹) = ( 1 ‘𝑋))) |
18 | 10, 17 | syl6bb 276 | 1 ⊢ (𝜑 → (𝐹(𝑋𝑆𝑌)𝐺 ↔ (𝐹 ∈ (𝑋𝐻𝑌) ∧ 𝐺 ∈ (𝑌𝐻𝑋) ∧ (𝐺(〈𝑋, 𝑌〉 · 𝑋)𝐹) = ( 1 ‘𝑋)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 〈cop 4183 class class class wbr 4653 {copab 4712 ‘cfv 5888 (class class class)co 6650 Basecbs 15857 Hom chom 15952 compcco 15953 Catccat 16325 Idccid 16326 Sectcsect 16404 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-sect 16407 |
This theorem is referenced by: issect2 16414 sectcan 16415 sectco 16416 oppcsect 16438 sectmon 16442 monsect 16443 funcsect 16532 fucsect 16632 invfuc 16634 setcsect 16739 catciso 16757 rngcsect 41980 rngcsectALTV 41992 ringcsect 42031 ringcsectALTV 42055 |
Copyright terms: Public domain | W3C validator |