MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sectss Structured version   Visualization version   GIF version

Theorem sectss 16412
Description: The section relation is a relation between morphisms from 𝑋 to 𝑌 and morphisms from 𝑌 to 𝑋. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
issect.b 𝐵 = (Base‘𝐶)
issect.h 𝐻 = (Hom ‘𝐶)
issect.o · = (comp‘𝐶)
issect.i 1 = (Id‘𝐶)
issect.s 𝑆 = (Sect‘𝐶)
issect.c (𝜑𝐶 ∈ Cat)
issect.x (𝜑𝑋𝐵)
issect.y (𝜑𝑌𝐵)
Assertion
Ref Expression
sectss (𝜑 → (𝑋𝑆𝑌) ⊆ ((𝑋𝐻𝑌) × (𝑌𝐻𝑋)))

Proof of Theorem sectss
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 issect.b . . 3 𝐵 = (Base‘𝐶)
2 issect.h . . 3 𝐻 = (Hom ‘𝐶)
3 issect.o . . 3 · = (comp‘𝐶)
4 issect.i . . 3 1 = (Id‘𝐶)
5 issect.s . . 3 𝑆 = (Sect‘𝐶)
6 issect.c . . 3 (𝜑𝐶 ∈ Cat)
7 issect.x . . 3 (𝜑𝑋𝐵)
8 issect.y . . 3 (𝜑𝑌𝐵)
91, 2, 3, 4, 5, 6, 7, 8sectfval 16411 . 2 (𝜑 → (𝑋𝑆𝑌) = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(⟨𝑋, 𝑌· 𝑋)𝑓) = ( 1𝑋))})
10 opabssxp 5193 . 2 {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (𝑋𝐻𝑌) ∧ 𝑔 ∈ (𝑌𝐻𝑋)) ∧ (𝑔(⟨𝑋, 𝑌· 𝑋)𝑓) = ( 1𝑋))} ⊆ ((𝑋𝐻𝑌) × (𝑌𝐻𝑋))
119, 10syl6eqss 3655 1 (𝜑 → (𝑋𝑆𝑌) ⊆ ((𝑋𝐻𝑌) × (𝑌𝐻𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wss 3574  cop 4183  {copab 4712   × cxp 5112  cfv 5888  (class class class)co 6650  Basecbs 15857  Hom chom 15952  compcco 15953  Catccat 16325  Idccid 16326  Sectcsect 16404
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-sect 16407
This theorem is referenced by:  isinv  16420  invss  16421  oppcsect2  16439  oppcinv  16440
  Copyright terms: Public domain W3C validator