Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  issmff Structured version   Visualization version   GIF version

Theorem issmff 40943
Description: The predicate "𝐹 is a real-valued measurable function w.r.t. to the sigma-algebra 𝑆". A function is measurable iff the preimages of all open intervals unbounded below are in the subspace sigma-algebra induced by its domain. The domain of 𝐹 is required to be a subset of the underlying set of 𝑆. Definition 121C of [Fremlin1] p. 36, and Proposition 121B (i) of [Fremlin1] p. 35 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
issmff.x 𝑥𝐹
issmff.s (𝜑𝑆 ∈ SAlg)
issmff.d 𝐷 = dom 𝐹
Assertion
Ref Expression
issmff (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷))))
Distinct variable groups:   𝐷,𝑎   𝐹,𝑎   𝑆,𝑎   𝑥,𝑎
Allowed substitution hints:   𝜑(𝑥,𝑎)   𝐷(𝑥)   𝑆(𝑥)   𝐹(𝑥)

Proof of Theorem issmff
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 issmff.s . . 3 (𝜑𝑆 ∈ SAlg)
2 issmff.d . . 3 𝐷 = dom 𝐹
31, 2issmf 40937 . 2 (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) < 𝑎} ∈ (𝑆t 𝐷))))
4 nfcv 2764 . . . . . . 7 𝑦𝐷
5 issmff.x . . . . . . . . 9 𝑥𝐹
65nfdm 5367 . . . . . . . 8 𝑥dom 𝐹
72, 6nfcxfr 2762 . . . . . . 7 𝑥𝐷
8 nfcv 2764 . . . . . . . . 9 𝑥𝑦
95, 8nffv 6198 . . . . . . . 8 𝑥(𝐹𝑦)
10 nfcv 2764 . . . . . . . 8 𝑥 <
11 nfcv 2764 . . . . . . . 8 𝑥𝑎
129, 10, 11nfbr 4699 . . . . . . 7 𝑥(𝐹𝑦) < 𝑎
13 nfv 1843 . . . . . . 7 𝑦(𝐹𝑥) < 𝑎
14 fveq2 6191 . . . . . . . 8 (𝑦 = 𝑥 → (𝐹𝑦) = (𝐹𝑥))
1514breq1d 4663 . . . . . . 7 (𝑦 = 𝑥 → ((𝐹𝑦) < 𝑎 ↔ (𝐹𝑥) < 𝑎))
164, 7, 12, 13, 15cbvrab 3198 . . . . . 6 {𝑦𝐷 ∣ (𝐹𝑦) < 𝑎} = {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎}
1716eleq1i 2692 . . . . 5 ({𝑦𝐷 ∣ (𝐹𝑦) < 𝑎} ∈ (𝑆t 𝐷) ↔ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷))
1817ralbii 2980 . . . 4 (∀𝑎 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) < 𝑎} ∈ (𝑆t 𝐷) ↔ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷))
19183anbi3i 1255 . . 3 ((𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) < 𝑎} ∈ (𝑆t 𝐷)) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷)))
2019a1i 11 . 2 (𝜑 → ((𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑦𝐷 ∣ (𝐹𝑦) < 𝑎} ∈ (𝑆t 𝐷)) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷))))
213, 20bitrd 268 1 (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 𝑆𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥𝐷 ∣ (𝐹𝑥) < 𝑎} ∈ (𝑆t 𝐷))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  w3a 1037   = wceq 1483  wcel 1990  wnfc 2751  wral 2912  {crab 2916  wss 3574   cuni 4436   class class class wbr 4653  dom cdm 5114  wf 5884  cfv 5888  (class class class)co 6650  cr 9935   < clt 10074  t crest 16081  SAlgcsalg 40528  SMblFncsmblfn 40909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-ioo 12179  df-ico 12181  df-smblfn 40910
This theorem is referenced by:  smfpreimaltf  40945  issmfdf  40946  smfpimltxr  40956
  Copyright terms: Public domain W3C validator