Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  issmff Structured version   Visualization version   Unicode version

Theorem issmff 40943
Description: The predicate " F is a real-valued measurable function w.r.t. to the sigma-algebra  S". A function is measurable iff the preimages of all open intervals unbounded below are in the subspace sigma-algebra induced by its domain. The domain of  F is required to be a subset of the underlying set of  S. Definition 121C of [Fremlin1] p. 36, and Proposition 121B (i) of [Fremlin1] p. 35 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
issmff.x  |-  F/_ x F
issmff.s  |-  ( ph  ->  S  e. SAlg )
issmff.d  |-  D  =  dom  F
Assertion
Ref Expression
issmff  |-  ( ph  ->  ( F  e.  (SMblFn `  S )  <->  ( D  C_ 
U. S  /\  F : D --> RR  /\  A. a  e.  RR  { x  e.  D  |  ( F `  x )  <  a }  e.  ( St  D ) ) ) )
Distinct variable groups:    D, a    F, a    S, a    x, a
Allowed substitution hints:    ph( x, a)    D( x)    S( x)    F( x)

Proof of Theorem issmff
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 issmff.s . . 3  |-  ( ph  ->  S  e. SAlg )
2 issmff.d . . 3  |-  D  =  dom  F
31, 2issmf 40937 . 2  |-  ( ph  ->  ( F  e.  (SMblFn `  S )  <->  ( D  C_ 
U. S  /\  F : D --> RR  /\  A. a  e.  RR  { y  e.  D  |  ( F `  y )  <  a }  e.  ( St  D ) ) ) )
4 nfcv 2764 . . . . . . 7  |-  F/_ y D
5 issmff.x . . . . . . . . 9  |-  F/_ x F
65nfdm 5367 . . . . . . . 8  |-  F/_ x dom  F
72, 6nfcxfr 2762 . . . . . . 7  |-  F/_ x D
8 nfcv 2764 . . . . . . . . 9  |-  F/_ x
y
95, 8nffv 6198 . . . . . . . 8  |-  F/_ x
( F `  y
)
10 nfcv 2764 . . . . . . . 8  |-  F/_ x  <
11 nfcv 2764 . . . . . . . 8  |-  F/_ x
a
129, 10, 11nfbr 4699 . . . . . . 7  |-  F/ x
( F `  y
)  <  a
13 nfv 1843 . . . . . . 7  |-  F/ y ( F `  x
)  <  a
14 fveq2 6191 . . . . . . . 8  |-  ( y  =  x  ->  ( F `  y )  =  ( F `  x ) )
1514breq1d 4663 . . . . . . 7  |-  ( y  =  x  ->  (
( F `  y
)  <  a  <->  ( F `  x )  <  a
) )
164, 7, 12, 13, 15cbvrab 3198 . . . . . 6  |-  { y  e.  D  |  ( F `  y )  <  a }  =  { x  e.  D  |  ( F `  x )  <  a }
1716eleq1i 2692 . . . . 5  |-  ( { y  e.  D  | 
( F `  y
)  <  a }  e.  ( St  D )  <->  { x  e.  D  |  ( F `  x )  <  a }  e.  ( St  D ) )
1817ralbii 2980 . . . 4  |-  ( A. a  e.  RR  { y  e.  D  |  ( F `  y )  <  a }  e.  ( St  D )  <->  A. a  e.  RR  { x  e.  D  |  ( F `
 x )  < 
a }  e.  ( St  D ) )
19183anbi3i 1255 . . 3  |-  ( ( D  C_  U. S  /\  F : D --> RR  /\  A. a  e.  RR  {
y  e.  D  | 
( F `  y
)  <  a }  e.  ( St  D ) )  <->  ( D  C_ 
U. S  /\  F : D --> RR  /\  A. a  e.  RR  { x  e.  D  |  ( F `  x )  <  a }  e.  ( St  D ) ) )
2019a1i 11 . 2  |-  ( ph  ->  ( ( D  C_  U. S  /\  F : D
--> RR  /\  A. a  e.  RR  { y  e.  D  |  ( F `
 y )  < 
a }  e.  ( St  D ) )  <->  ( D  C_ 
U. S  /\  F : D --> RR  /\  A. a  e.  RR  { x  e.  D  |  ( F `  x )  <  a }  e.  ( St  D ) ) ) )
213, 20bitrd 268 1  |-  ( ph  ->  ( F  e.  (SMblFn `  S )  <->  ( D  C_ 
U. S  /\  F : D --> RR  /\  A. a  e.  RR  { x  e.  D  |  ( F `  x )  <  a }  e.  ( St  D ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ w3a 1037    = wceq 1483    e. wcel 1990   F/_wnfc 2751   A.wral 2912   {crab 2916    C_ wss 3574   U.cuni 4436   class class class wbr 4653   dom cdm 5114   -->wf 5884   ` cfv 5888  (class class class)co 6650   RRcr 9935    < clt 10074   ↾t crest 16081  SAlgcsalg 40528  SMblFncsmblfn 40909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-ioo 12179  df-ico 12181  df-smblfn 40910
This theorem is referenced by:  smfpreimaltf  40945  issmfdf  40946  smfpimltxr  40956
  Copyright terms: Public domain W3C validator