MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isssp Structured version   Visualization version   GIF version

Theorem isssp 27579
Description: The predicate "is a subspace." (Contributed by NM, 26-Jan-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
isssp.g 𝐺 = ( +𝑣𝑈)
isssp.f 𝐹 = ( +𝑣𝑊)
isssp.s 𝑆 = ( ·𝑠OLD𝑈)
isssp.r 𝑅 = ( ·𝑠OLD𝑊)
isssp.n 𝑁 = (normCV𝑈)
isssp.m 𝑀 = (normCV𝑊)
isssp.h 𝐻 = (SubSp‘𝑈)
Assertion
Ref Expression
isssp (𝑈 ∈ NrmCVec → (𝑊𝐻 ↔ (𝑊 ∈ NrmCVec ∧ (𝐹𝐺𝑅𝑆𝑀𝑁))))

Proof of Theorem isssp
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 isssp.g . . . 4 𝐺 = ( +𝑣𝑈)
2 isssp.s . . . 4 𝑆 = ( ·𝑠OLD𝑈)
3 isssp.n . . . 4 𝑁 = (normCV𝑈)
4 isssp.h . . . 4 𝐻 = (SubSp‘𝑈)
51, 2, 3, 4sspval 27578 . . 3 (𝑈 ∈ NrmCVec → 𝐻 = {𝑤 ∈ NrmCVec ∣ (( +𝑣𝑤) ⊆ 𝐺 ∧ ( ·𝑠OLD𝑤) ⊆ 𝑆 ∧ (normCV𝑤) ⊆ 𝑁)})
65eleq2d 2687 . 2 (𝑈 ∈ NrmCVec → (𝑊𝐻𝑊 ∈ {𝑤 ∈ NrmCVec ∣ (( +𝑣𝑤) ⊆ 𝐺 ∧ ( ·𝑠OLD𝑤) ⊆ 𝑆 ∧ (normCV𝑤) ⊆ 𝑁)}))
7 fveq2 6191 . . . . . 6 (𝑤 = 𝑊 → ( +𝑣𝑤) = ( +𝑣𝑊))
8 isssp.f . . . . . 6 𝐹 = ( +𝑣𝑊)
97, 8syl6eqr 2674 . . . . 5 (𝑤 = 𝑊 → ( +𝑣𝑤) = 𝐹)
109sseq1d 3632 . . . 4 (𝑤 = 𝑊 → (( +𝑣𝑤) ⊆ 𝐺𝐹𝐺))
11 fveq2 6191 . . . . . 6 (𝑤 = 𝑊 → ( ·𝑠OLD𝑤) = ( ·𝑠OLD𝑊))
12 isssp.r . . . . . 6 𝑅 = ( ·𝑠OLD𝑊)
1311, 12syl6eqr 2674 . . . . 5 (𝑤 = 𝑊 → ( ·𝑠OLD𝑤) = 𝑅)
1413sseq1d 3632 . . . 4 (𝑤 = 𝑊 → (( ·𝑠OLD𝑤) ⊆ 𝑆𝑅𝑆))
15 fveq2 6191 . . . . . 6 (𝑤 = 𝑊 → (normCV𝑤) = (normCV𝑊))
16 isssp.m . . . . . 6 𝑀 = (normCV𝑊)
1715, 16syl6eqr 2674 . . . . 5 (𝑤 = 𝑊 → (normCV𝑤) = 𝑀)
1817sseq1d 3632 . . . 4 (𝑤 = 𝑊 → ((normCV𝑤) ⊆ 𝑁𝑀𝑁))
1910, 14, 183anbi123d 1399 . . 3 (𝑤 = 𝑊 → ((( +𝑣𝑤) ⊆ 𝐺 ∧ ( ·𝑠OLD𝑤) ⊆ 𝑆 ∧ (normCV𝑤) ⊆ 𝑁) ↔ (𝐹𝐺𝑅𝑆𝑀𝑁)))
2019elrab 3363 . 2 (𝑊 ∈ {𝑤 ∈ NrmCVec ∣ (( +𝑣𝑤) ⊆ 𝐺 ∧ ( ·𝑠OLD𝑤) ⊆ 𝑆 ∧ (normCV𝑤) ⊆ 𝑁)} ↔ (𝑊 ∈ NrmCVec ∧ (𝐹𝐺𝑅𝑆𝑀𝑁)))
216, 20syl6bb 276 1 (𝑈 ∈ NrmCVec → (𝑊𝐻 ↔ (𝑊 ∈ NrmCVec ∧ (𝐹𝐺𝑅𝑆𝑀𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  {crab 2916  wss 3574  cfv 5888  NrmCVeccnv 27439   +𝑣 cpv 27440   ·𝑠OLD cns 27442  normCVcnmcv 27445  SubSpcss 27576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fo 5894  df-fv 5896  df-oprab 6654  df-1st 7168  df-2nd 7169  df-vc 27414  df-nv 27447  df-va 27450  df-sm 27452  df-nmcv 27455  df-ssp 27577
This theorem is referenced by:  sspid  27580  sspnv  27581  sspba  27582  sspg  27583  ssps  27585  sspn  27591  hhsst  28123  hhsssh2  28127
  Copyright terms: Public domain W3C validator