![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hhsst | Structured version Visualization version GIF version |
Description: A member of Sℋ is a subspace. (Contributed by NM, 6-Apr-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hhsst.1 | ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
hhsst.2 | ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 |
Ref | Expression |
---|---|
hhsst | ⊢ (𝐻 ∈ Sℋ → 𝑊 ∈ (SubSp‘𝑈)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hhsst.2 | . . . 4 ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 | |
2 | 1 | hhssnvt 28122 | . . 3 ⊢ (𝐻 ∈ Sℋ → 𝑊 ∈ NrmCVec) |
3 | resss 5422 | . . . 4 ⊢ ( +ℎ ↾ (𝐻 × 𝐻)) ⊆ +ℎ | |
4 | resss 5422 | . . . 4 ⊢ ( ·ℎ ↾ (ℂ × 𝐻)) ⊆ ·ℎ | |
5 | resss 5422 | . . . 4 ⊢ (normℎ ↾ 𝐻) ⊆ normℎ | |
6 | 3, 4, 5 | 3pm3.2i 1239 | . . 3 ⊢ (( +ℎ ↾ (𝐻 × 𝐻)) ⊆ +ℎ ∧ ( ·ℎ ↾ (ℂ × 𝐻)) ⊆ ·ℎ ∧ (normℎ ↾ 𝐻) ⊆ normℎ) |
7 | 2, 6 | jctir 561 | . 2 ⊢ (𝐻 ∈ Sℋ → (𝑊 ∈ NrmCVec ∧ (( +ℎ ↾ (𝐻 × 𝐻)) ⊆ +ℎ ∧ ( ·ℎ ↾ (ℂ × 𝐻)) ⊆ ·ℎ ∧ (normℎ ↾ 𝐻) ⊆ normℎ))) |
8 | hhsst.1 | . . . 4 ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
9 | 8 | hhnv 28022 | . . 3 ⊢ 𝑈 ∈ NrmCVec |
10 | 8 | hhva 28023 | . . . 4 ⊢ +ℎ = ( +𝑣 ‘𝑈) |
11 | 1 | hhssva 28114 | . . . 4 ⊢ ( +ℎ ↾ (𝐻 × 𝐻)) = ( +𝑣 ‘𝑊) |
12 | 8 | hhsm 28026 | . . . 4 ⊢ ·ℎ = ( ·𝑠OLD ‘𝑈) |
13 | 1 | hhsssm 28115 | . . . 4 ⊢ ( ·ℎ ↾ (ℂ × 𝐻)) = ( ·𝑠OLD ‘𝑊) |
14 | 8 | hhnm 28028 | . . . 4 ⊢ normℎ = (normCV‘𝑈) |
15 | 1 | hhssnm 28116 | . . . 4 ⊢ (normℎ ↾ 𝐻) = (normCV‘𝑊) |
16 | eqid 2622 | . . . 4 ⊢ (SubSp‘𝑈) = (SubSp‘𝑈) | |
17 | 10, 11, 12, 13, 14, 15, 16 | isssp 27579 | . . 3 ⊢ (𝑈 ∈ NrmCVec → (𝑊 ∈ (SubSp‘𝑈) ↔ (𝑊 ∈ NrmCVec ∧ (( +ℎ ↾ (𝐻 × 𝐻)) ⊆ +ℎ ∧ ( ·ℎ ↾ (ℂ × 𝐻)) ⊆ ·ℎ ∧ (normℎ ↾ 𝐻) ⊆ normℎ)))) |
18 | 9, 17 | ax-mp 5 | . 2 ⊢ (𝑊 ∈ (SubSp‘𝑈) ↔ (𝑊 ∈ NrmCVec ∧ (( +ℎ ↾ (𝐻 × 𝐻)) ⊆ +ℎ ∧ ( ·ℎ ↾ (ℂ × 𝐻)) ⊆ ·ℎ ∧ (normℎ ↾ 𝐻) ⊆ normℎ))) |
19 | 7, 18 | sylibr 224 | 1 ⊢ (𝐻 ∈ Sℋ → 𝑊 ∈ (SubSp‘𝑈)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ⊆ wss 3574 〈cop 4183 × cxp 5112 ↾ cres 5116 ‘cfv 5888 ℂcc 9934 NrmCVeccnv 27439 SubSpcss 27576 +ℎ cva 27777 ·ℎ csm 27778 normℎcno 27780 Sℋ csh 27785 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 ax-addf 10015 ax-mulf 10016 ax-hilex 27856 ax-hfvadd 27857 ax-hvcom 27858 ax-hvass 27859 ax-hv0cl 27860 ax-hvaddid 27861 ax-hfvmul 27862 ax-hvmulid 27863 ax-hvmulass 27864 ax-hvdistr1 27865 ax-hvdistr2 27866 ax-hvmul0 27867 ax-hfi 27936 ax-his1 27939 ax-his2 27940 ax-his3 27941 ax-his4 27942 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-map 7859 df-pm 7860 df-en 7956 df-dom 7957 df-sdom 7958 df-sup 8348 df-inf 8349 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-4 11081 df-n0 11293 df-z 11378 df-uz 11688 df-q 11789 df-rp 11833 df-xneg 11946 df-xadd 11947 df-xmul 11948 df-icc 12182 df-seq 12802 df-exp 12861 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-topgen 16104 df-psmet 19738 df-xmet 19739 df-met 19740 df-bl 19741 df-mopn 19742 df-top 20699 df-topon 20716 df-bases 20750 df-lm 21033 df-haus 21119 df-grpo 27347 df-gid 27348 df-ginv 27349 df-gdiv 27350 df-ablo 27399 df-vc 27414 df-nv 27447 df-va 27450 df-ba 27451 df-sm 27452 df-0v 27453 df-vs 27454 df-nmcv 27455 df-ims 27456 df-ssp 27577 df-hnorm 27825 df-hba 27826 df-hvsub 27828 df-hlim 27829 df-sh 28064 df-ch 28078 df-ch0 28110 |
This theorem is referenced by: hhsssh 28126 hhssba 28128 hhssvs 28129 hhssph 28131 pjhthlem2 28251 |
Copyright terms: Public domain | W3C validator |