MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sspba Structured version   Visualization version   GIF version

Theorem sspba 27582
Description: The base set of a subspace is included in the parent base set. (Contributed by NM, 27-Jan-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
sspba.x 𝑋 = (BaseSet‘𝑈)
sspba.y 𝑌 = (BaseSet‘𝑊)
sspba.h 𝐻 = (SubSp‘𝑈)
Assertion
Ref Expression
sspba ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑌𝑋)

Proof of Theorem sspba
StepHypRef Expression
1 eqid 2622 . . . . . 6 ( +𝑣𝑈) = ( +𝑣𝑈)
2 eqid 2622 . . . . . 6 ( +𝑣𝑊) = ( +𝑣𝑊)
3 eqid 2622 . . . . . 6 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
4 eqid 2622 . . . . . 6 ( ·𝑠OLD𝑊) = ( ·𝑠OLD𝑊)
5 eqid 2622 . . . . . 6 (normCV𝑈) = (normCV𝑈)
6 eqid 2622 . . . . . 6 (normCV𝑊) = (normCV𝑊)
7 sspba.h . . . . . 6 𝐻 = (SubSp‘𝑈)
81, 2, 3, 4, 5, 6, 7isssp 27579 . . . . 5 (𝑈 ∈ NrmCVec → (𝑊𝐻 ↔ (𝑊 ∈ NrmCVec ∧ (( +𝑣𝑊) ⊆ ( +𝑣𝑈) ∧ ( ·𝑠OLD𝑊) ⊆ ( ·𝑠OLD𝑈) ∧ (normCV𝑊) ⊆ (normCV𝑈)))))
98simplbda 654 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → (( +𝑣𝑊) ⊆ ( +𝑣𝑈) ∧ ( ·𝑠OLD𝑊) ⊆ ( ·𝑠OLD𝑈) ∧ (normCV𝑊) ⊆ (normCV𝑈)))
109simp1d 1073 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → ( +𝑣𝑊) ⊆ ( +𝑣𝑈))
11 rnss 5354 . . 3 (( +𝑣𝑊) ⊆ ( +𝑣𝑈) → ran ( +𝑣𝑊) ⊆ ran ( +𝑣𝑈))
1210, 11syl 17 . 2 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → ran ( +𝑣𝑊) ⊆ ran ( +𝑣𝑈))
13 sspba.y . . 3 𝑌 = (BaseSet‘𝑊)
1413, 2bafval 27459 . 2 𝑌 = ran ( +𝑣𝑊)
15 sspba.x . . 3 𝑋 = (BaseSet‘𝑈)
1615, 1bafval 27459 . 2 𝑋 = ran ( +𝑣𝑈)
1712, 14, 163sstr4g 3646 1 ((𝑈 ∈ NrmCVec ∧ 𝑊𝐻) → 𝑌𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wss 3574  ran crn 5115  cfv 5888  NrmCVeccnv 27439   +𝑣 cpv 27440  BaseSetcba 27441   ·𝑠OLD cns 27442  normCVcnmcv 27445  SubSpcss 27576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fo 5894  df-fv 5896  df-oprab 6654  df-1st 7168  df-2nd 7169  df-vc 27414  df-nv 27447  df-va 27450  df-ba 27451  df-sm 27452  df-nmcv 27455  df-ssp 27577
This theorem is referenced by:  sspg  27583  ssps  27585  sspmlem  27587  sspmval  27588  sspz  27590  sspn  27591  sspimsval  27593  sspph  27710  minvecolem1  27730  minvecolem2  27731  minvecolem3  27732  minvecolem4b  27734  minvecolem4  27736  minvecolem5  27737  minvecolem6  27738  minvecolem7  27739
  Copyright terms: Public domain W3C validator