HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  isst Structured version   Visualization version   GIF version

Theorem isst 29072
Description: Property of a state. (Contributed by NM, 23-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
isst (𝑆 ∈ States ↔ (𝑆: C ⟶(0[,]1) ∧ (𝑆‘ ℋ) = 1 ∧ ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦)))))
Distinct variable group:   𝑥,𝑦,𝑆

Proof of Theorem isst
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 ovex 6678 . . . 4 (0[,]1) ∈ V
2 chex 28083 . . . 4 C ∈ V
31, 2elmap 7886 . . 3 (𝑆 ∈ ((0[,]1) ↑𝑚 C ) ↔ 𝑆: C ⟶(0[,]1))
43anbi1i 731 . 2 ((𝑆 ∈ ((0[,]1) ↑𝑚 C ) ∧ ((𝑆‘ ℋ) = 1 ∧ ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦))))) ↔ (𝑆: C ⟶(0[,]1) ∧ ((𝑆‘ ℋ) = 1 ∧ ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦))))))
5 fveq1 6190 . . . . 5 (𝑓 = 𝑆 → (𝑓‘ ℋ) = (𝑆‘ ℋ))
65eqeq1d 2624 . . . 4 (𝑓 = 𝑆 → ((𝑓‘ ℋ) = 1 ↔ (𝑆‘ ℋ) = 1))
7 fveq1 6190 . . . . . . 7 (𝑓 = 𝑆 → (𝑓‘(𝑥 𝑦)) = (𝑆‘(𝑥 𝑦)))
8 fveq1 6190 . . . . . . . 8 (𝑓 = 𝑆 → (𝑓𝑥) = (𝑆𝑥))
9 fveq1 6190 . . . . . . . 8 (𝑓 = 𝑆 → (𝑓𝑦) = (𝑆𝑦))
108, 9oveq12d 6668 . . . . . . 7 (𝑓 = 𝑆 → ((𝑓𝑥) + (𝑓𝑦)) = ((𝑆𝑥) + (𝑆𝑦)))
117, 10eqeq12d 2637 . . . . . 6 (𝑓 = 𝑆 → ((𝑓‘(𝑥 𝑦)) = ((𝑓𝑥) + (𝑓𝑦)) ↔ (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦))))
1211imbi2d 330 . . . . 5 (𝑓 = 𝑆 → ((𝑥 ⊆ (⊥‘𝑦) → (𝑓‘(𝑥 𝑦)) = ((𝑓𝑥) + (𝑓𝑦))) ↔ (𝑥 ⊆ (⊥‘𝑦) → (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦)))))
13122ralbidv 2989 . . . 4 (𝑓 = 𝑆 → (∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (𝑓‘(𝑥 𝑦)) = ((𝑓𝑥) + (𝑓𝑦))) ↔ ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦)))))
146, 13anbi12d 747 . . 3 (𝑓 = 𝑆 → (((𝑓‘ ℋ) = 1 ∧ ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (𝑓‘(𝑥 𝑦)) = ((𝑓𝑥) + (𝑓𝑦)))) ↔ ((𝑆‘ ℋ) = 1 ∧ ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦))))))
15 df-st 29070 . . 3 States = {𝑓 ∈ ((0[,]1) ↑𝑚 C ) ∣ ((𝑓‘ ℋ) = 1 ∧ ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (𝑓‘(𝑥 𝑦)) = ((𝑓𝑥) + (𝑓𝑦))))}
1614, 15elrab2 3366 . 2 (𝑆 ∈ States ↔ (𝑆 ∈ ((0[,]1) ↑𝑚 C ) ∧ ((𝑆‘ ℋ) = 1 ∧ ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦))))))
17 3anass 1042 . 2 ((𝑆: C ⟶(0[,]1) ∧ (𝑆‘ ℋ) = 1 ∧ ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦)))) ↔ (𝑆: C ⟶(0[,]1) ∧ ((𝑆‘ ℋ) = 1 ∧ ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦))))))
184, 16, 173bitr4i 292 1 (𝑆 ∈ States ↔ (𝑆: C ⟶(0[,]1) ∧ (𝑆‘ ℋ) = 1 ∧ ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  wss 3574  wf 5884  cfv 5888  (class class class)co 6650  𝑚 cmap 7857  0cc0 9936  1c1 9937   + caddc 9939  [,]cicc 12178  chil 27776   C cch 27786  cort 27787   chj 27790  Statescst 27819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-hilex 27856
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-sh 28064  df-ch 28078  df-st 29070
This theorem is referenced by:  sticl  29074  sthil  29093  stj  29094  strlem3a  29111
  Copyright terms: Public domain W3C validator