HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  stj Structured version   Visualization version   GIF version

Theorem stj 29094
Description: The value of a state on a join. (Contributed by NM, 23-Oct-1999.) (New usage is discouraged.)
Assertion
Ref Expression
stj (𝑆 ∈ States → (((𝐴C𝐵C ) ∧ 𝐴 ⊆ (⊥‘𝐵)) → (𝑆‘(𝐴 𝐵)) = ((𝑆𝐴) + (𝑆𝐵))))

Proof of Theorem stj
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isst 29072 . . . 4 (𝑆 ∈ States ↔ (𝑆: C ⟶(0[,]1) ∧ (𝑆‘ ℋ) = 1 ∧ ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦)))))
21simp3bi 1078 . . 3 (𝑆 ∈ States → ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦))))
3 sseq1 3626 . . . . 5 (𝑥 = 𝐴 → (𝑥 ⊆ (⊥‘𝑦) ↔ 𝐴 ⊆ (⊥‘𝑦)))
4 oveq1 6657 . . . . . . 7 (𝑥 = 𝐴 → (𝑥 𝑦) = (𝐴 𝑦))
54fveq2d 6195 . . . . . 6 (𝑥 = 𝐴 → (𝑆‘(𝑥 𝑦)) = (𝑆‘(𝐴 𝑦)))
6 fveq2 6191 . . . . . . 7 (𝑥 = 𝐴 → (𝑆𝑥) = (𝑆𝐴))
76oveq1d 6665 . . . . . 6 (𝑥 = 𝐴 → ((𝑆𝑥) + (𝑆𝑦)) = ((𝑆𝐴) + (𝑆𝑦)))
85, 7eqeq12d 2637 . . . . 5 (𝑥 = 𝐴 → ((𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦)) ↔ (𝑆‘(𝐴 𝑦)) = ((𝑆𝐴) + (𝑆𝑦))))
93, 8imbi12d 334 . . . 4 (𝑥 = 𝐴 → ((𝑥 ⊆ (⊥‘𝑦) → (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦))) ↔ (𝐴 ⊆ (⊥‘𝑦) → (𝑆‘(𝐴 𝑦)) = ((𝑆𝐴) + (𝑆𝑦)))))
10 fveq2 6191 . . . . . 6 (𝑦 = 𝐵 → (⊥‘𝑦) = (⊥‘𝐵))
1110sseq2d 3633 . . . . 5 (𝑦 = 𝐵 → (𝐴 ⊆ (⊥‘𝑦) ↔ 𝐴 ⊆ (⊥‘𝐵)))
12 oveq2 6658 . . . . . . 7 (𝑦 = 𝐵 → (𝐴 𝑦) = (𝐴 𝐵))
1312fveq2d 6195 . . . . . 6 (𝑦 = 𝐵 → (𝑆‘(𝐴 𝑦)) = (𝑆‘(𝐴 𝐵)))
14 fveq2 6191 . . . . . . 7 (𝑦 = 𝐵 → (𝑆𝑦) = (𝑆𝐵))
1514oveq2d 6666 . . . . . 6 (𝑦 = 𝐵 → ((𝑆𝐴) + (𝑆𝑦)) = ((𝑆𝐴) + (𝑆𝐵)))
1613, 15eqeq12d 2637 . . . . 5 (𝑦 = 𝐵 → ((𝑆‘(𝐴 𝑦)) = ((𝑆𝐴) + (𝑆𝑦)) ↔ (𝑆‘(𝐴 𝐵)) = ((𝑆𝐴) + (𝑆𝐵))))
1711, 16imbi12d 334 . . . 4 (𝑦 = 𝐵 → ((𝐴 ⊆ (⊥‘𝑦) → (𝑆‘(𝐴 𝑦)) = ((𝑆𝐴) + (𝑆𝑦))) ↔ (𝐴 ⊆ (⊥‘𝐵) → (𝑆‘(𝐴 𝐵)) = ((𝑆𝐴) + (𝑆𝐵)))))
189, 17rspc2v 3322 . . 3 ((𝐴C𝐵C ) → (∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦))) → (𝐴 ⊆ (⊥‘𝐵) → (𝑆‘(𝐴 𝐵)) = ((𝑆𝐴) + (𝑆𝐵)))))
192, 18syl5com 31 . 2 (𝑆 ∈ States → ((𝐴C𝐵C ) → (𝐴 ⊆ (⊥‘𝐵) → (𝑆‘(𝐴 𝐵)) = ((𝑆𝐴) + (𝑆𝐵)))))
2019impd 447 1 (𝑆 ∈ States → (((𝐴C𝐵C ) ∧ 𝐴 ⊆ (⊥‘𝐵)) → (𝑆‘(𝐴 𝐵)) = ((𝑆𝐴) + (𝑆𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  wral 2912  wss 3574  wf 5884  cfv 5888  (class class class)co 6650  0cc0 9936  1c1 9937   + caddc 9939  [,]cicc 12178  chil 27776   C cch 27786  cort 27787   chj 27790  Statescst 27819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-hilex 27856
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-sh 28064  df-ch 28078  df-st 29070
This theorem is referenced by:  sto1i  29095  stlei  29099  stji1i  29101
  Copyright terms: Public domain W3C validator