HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  isst Structured version   Visualization version   Unicode version

Theorem isst 29072
Description: Property of a state. (Contributed by NM, 23-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
isst  |-  ( S  e.  States 
<->  ( S : CH --> ( 0 [,] 1
)  /\  ( S `  ~H )  =  1  /\  A. x  e. 
CH  A. y  e.  CH  ( x  C_  ( _|_ `  y )  ->  ( S `  ( x  vH  y ) )  =  ( ( S `  x )  +  ( S `  y ) ) ) ) )
Distinct variable group:    x, y, S

Proof of Theorem isst
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 ovex 6678 . . . 4  |-  ( 0 [,] 1 )  e. 
_V
2 chex 28083 . . . 4  |-  CH  e.  _V
31, 2elmap 7886 . . 3  |-  ( S  e.  ( ( 0 [,] 1 )  ^m  CH )  <->  S : CH --> ( 0 [,] 1 ) )
43anbi1i 731 . 2  |-  ( ( S  e.  ( ( 0 [,] 1 )  ^m  CH )  /\  ( ( S `  ~H )  =  1  /\  A. x  e.  CH  A. y  e.  CH  (
x  C_  ( _|_ `  y )  ->  ( S `  ( x  vH  y ) )  =  ( ( S `  x )  +  ( S `  y ) ) ) ) )  <-> 
( S : CH --> ( 0 [,] 1
)  /\  ( ( S `  ~H )  =  1  /\  A. x  e.  CH  A. y  e.  CH  ( x  C_  ( _|_ `  y )  ->  ( S `  ( x  vH  y
) )  =  ( ( S `  x
)  +  ( S `
 y ) ) ) ) ) )
5 fveq1 6190 . . . . 5  |-  ( f  =  S  ->  (
f `  ~H )  =  ( S `  ~H ) )
65eqeq1d 2624 . . . 4  |-  ( f  =  S  ->  (
( f `  ~H )  =  1  <->  ( S `  ~H )  =  1 ) )
7 fveq1 6190 . . . . . . 7  |-  ( f  =  S  ->  (
f `  ( x  vH  y ) )  =  ( S `  (
x  vH  y )
) )
8 fveq1 6190 . . . . . . . 8  |-  ( f  =  S  ->  (
f `  x )  =  ( S `  x ) )
9 fveq1 6190 . . . . . . . 8  |-  ( f  =  S  ->  (
f `  y )  =  ( S `  y ) )
108, 9oveq12d 6668 . . . . . . 7  |-  ( f  =  S  ->  (
( f `  x
)  +  ( f `
 y ) )  =  ( ( S `
 x )  +  ( S `  y
) ) )
117, 10eqeq12d 2637 . . . . . 6  |-  ( f  =  S  ->  (
( f `  (
x  vH  y )
)  =  ( ( f `  x )  +  ( f `  y ) )  <->  ( S `  ( x  vH  y
) )  =  ( ( S `  x
)  +  ( S `
 y ) ) ) )
1211imbi2d 330 . . . . 5  |-  ( f  =  S  ->  (
( x  C_  ( _|_ `  y )  -> 
( f `  (
x  vH  y )
)  =  ( ( f `  x )  +  ( f `  y ) ) )  <-> 
( x  C_  ( _|_ `  y )  -> 
( S `  (
x  vH  y )
)  =  ( ( S `  x )  +  ( S `  y ) ) ) ) )
13122ralbidv 2989 . . . 4  |-  ( f  =  S  ->  ( A. x  e.  CH  A. y  e.  CH  ( x 
C_  ( _|_ `  y
)  ->  ( f `  ( x  vH  y
) )  =  ( ( f `  x
)  +  ( f `
 y ) ) )  <->  A. x  e.  CH  A. y  e.  CH  (
x  C_  ( _|_ `  y )  ->  ( S `  ( x  vH  y ) )  =  ( ( S `  x )  +  ( S `  y ) ) ) ) )
146, 13anbi12d 747 . . 3  |-  ( f  =  S  ->  (
( ( f `  ~H )  =  1  /\  A. x  e.  CH  A. y  e.  CH  (
x  C_  ( _|_ `  y )  ->  (
f `  ( x  vH  y ) )  =  ( ( f `  x )  +  ( f `  y ) ) ) )  <->  ( ( S `  ~H )  =  1  /\  A. x  e.  CH  A. y  e.  CH  ( x  C_  ( _|_ `  y )  ->  ( S `  ( x  vH  y
) )  =  ( ( S `  x
)  +  ( S `
 y ) ) ) ) ) )
15 df-st 29070 . . 3  |-  States  =  {
f  e.  ( ( 0 [,] 1 )  ^m  CH )  |  ( ( f `  ~H )  =  1  /\  A. x  e.  CH  A. y  e.  CH  (
x  C_  ( _|_ `  y )  ->  (
f `  ( x  vH  y ) )  =  ( ( f `  x )  +  ( f `  y ) ) ) ) }
1614, 15elrab2 3366 . 2  |-  ( S  e.  States 
<->  ( S  e.  ( ( 0 [,] 1
)  ^m  CH )  /\  ( ( S `  ~H )  =  1  /\  A. x  e.  CH  A. y  e.  CH  (
x  C_  ( _|_ `  y )  ->  ( S `  ( x  vH  y ) )  =  ( ( S `  x )  +  ( S `  y ) ) ) ) ) )
17 3anass 1042 . 2  |-  ( ( S : CH --> ( 0 [,] 1 )  /\  ( S `  ~H )  =  1  /\  A. x  e.  CH  A. y  e.  CH  ( x  C_  ( _|_ `  y )  ->  ( S `  ( x  vH  y
) )  =  ( ( S `  x
)  +  ( S `
 y ) ) ) )  <->  ( S : CH --> ( 0 [,] 1 )  /\  (
( S `  ~H )  =  1  /\  A. x  e.  CH  A. y  e.  CH  ( x 
C_  ( _|_ `  y
)  ->  ( S `  ( x  vH  y
) )  =  ( ( S `  x
)  +  ( S `
 y ) ) ) ) ) )
184, 16, 173bitr4i 292 1  |-  ( S  e.  States 
<->  ( S : CH --> ( 0 [,] 1
)  /\  ( S `  ~H )  =  1  /\  A. x  e. 
CH  A. y  e.  CH  ( x  C_  ( _|_ `  y )  ->  ( S `  ( x  vH  y ) )  =  ( ( S `  x )  +  ( S `  y ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912    C_ wss 3574   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   0cc0 9936   1c1 9937    + caddc 9939   [,]cicc 12178   ~Hchil 27776   CHcch 27786   _|_cort 27787    vH chj 27790   Statescst 27819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-hilex 27856
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-sh 28064  df-ch 28078  df-st 29070
This theorem is referenced by:  sticl  29074  sthil  29093  stj  29094  strlem3a  29111
  Copyright terms: Public domain W3C validator