Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  istotbnd Structured version   Visualization version   GIF version

Theorem istotbnd 33568
Description: The predicate "is a totally bounded metric space". (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
istotbnd (𝑀 ∈ (TotBnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))))
Distinct variable groups:   𝑏,𝑑,𝑣,𝑥,𝑀   𝑋,𝑏,𝑑,𝑣,𝑥

Proof of Theorem istotbnd
Dummy variables 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvex 6221 . 2 (𝑀 ∈ (TotBnd‘𝑋) → 𝑋 ∈ V)
2 elfvex 6221 . . 3 (𝑀 ∈ (Met‘𝑋) → 𝑋 ∈ V)
32adantr 481 . 2 ((𝑀 ∈ (Met‘𝑋) ∧ ∀𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))) → 𝑋 ∈ V)
4 fveq2 6191 . . . . . 6 (𝑦 = 𝑋 → (Met‘𝑦) = (Met‘𝑋))
5 eqeq2 2633 . . . . . . . . 9 (𝑦 = 𝑋 → ( 𝑣 = 𝑦 𝑣 = 𝑋))
6 rexeq 3139 . . . . . . . . . 10 (𝑦 = 𝑋 → (∃𝑥𝑦 𝑏 = (𝑥(ball‘𝑚)𝑑) ↔ ∃𝑥𝑋 𝑏 = (𝑥(ball‘𝑚)𝑑)))
76ralbidv 2986 . . . . . . . . 9 (𝑦 = 𝑋 → (∀𝑏𝑣𝑥𝑦 𝑏 = (𝑥(ball‘𝑚)𝑑) ↔ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑚)𝑑)))
85, 7anbi12d 747 . . . . . . . 8 (𝑦 = 𝑋 → (( 𝑣 = 𝑦 ∧ ∀𝑏𝑣𝑥𝑦 𝑏 = (𝑥(ball‘𝑚)𝑑)) ↔ ( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑚)𝑑))))
98rexbidv 3052 . . . . . . 7 (𝑦 = 𝑋 → (∃𝑣 ∈ Fin ( 𝑣 = 𝑦 ∧ ∀𝑏𝑣𝑥𝑦 𝑏 = (𝑥(ball‘𝑚)𝑑)) ↔ ∃𝑣 ∈ Fin ( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑚)𝑑))))
109ralbidv 2986 . . . . . 6 (𝑦 = 𝑋 → (∀𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑦 ∧ ∀𝑏𝑣𝑥𝑦 𝑏 = (𝑥(ball‘𝑚)𝑑)) ↔ ∀𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑚)𝑑))))
114, 10rabeqbidv 3195 . . . . 5 (𝑦 = 𝑋 → {𝑚 ∈ (Met‘𝑦) ∣ ∀𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑦 ∧ ∀𝑏𝑣𝑥𝑦 𝑏 = (𝑥(ball‘𝑚)𝑑))} = {𝑚 ∈ (Met‘𝑋) ∣ ∀𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑚)𝑑))})
12 df-totbnd 33567 . . . . 5 TotBnd = (𝑦 ∈ V ↦ {𝑚 ∈ (Met‘𝑦) ∣ ∀𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑦 ∧ ∀𝑏𝑣𝑥𝑦 𝑏 = (𝑥(ball‘𝑚)𝑑))})
13 fvex 6201 . . . . . 6 (Met‘𝑋) ∈ V
1413rabex 4813 . . . . 5 {𝑚 ∈ (Met‘𝑋) ∣ ∀𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑚)𝑑))} ∈ V
1511, 12, 14fvmpt 6282 . . . 4 (𝑋 ∈ V → (TotBnd‘𝑋) = {𝑚 ∈ (Met‘𝑋) ∣ ∀𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑚)𝑑))})
1615eleq2d 2687 . . 3 (𝑋 ∈ V → (𝑀 ∈ (TotBnd‘𝑋) ↔ 𝑀 ∈ {𝑚 ∈ (Met‘𝑋) ∣ ∀𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑚)𝑑))}))
17 fveq2 6191 . . . . . . . . . . 11 (𝑚 = 𝑀 → (ball‘𝑚) = (ball‘𝑀))
1817oveqd 6667 . . . . . . . . . 10 (𝑚 = 𝑀 → (𝑥(ball‘𝑚)𝑑) = (𝑥(ball‘𝑀)𝑑))
1918eqeq2d 2632 . . . . . . . . 9 (𝑚 = 𝑀 → (𝑏 = (𝑥(ball‘𝑚)𝑑) ↔ 𝑏 = (𝑥(ball‘𝑀)𝑑)))
2019rexbidv 3052 . . . . . . . 8 (𝑚 = 𝑀 → (∃𝑥𝑋 𝑏 = (𝑥(ball‘𝑚)𝑑) ↔ ∃𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))
2120ralbidv 2986 . . . . . . 7 (𝑚 = 𝑀 → (∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑚)𝑑) ↔ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))
2221anbi2d 740 . . . . . 6 (𝑚 = 𝑀 → (( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑚)𝑑)) ↔ ( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))))
2322rexbidv 3052 . . . . 5 (𝑚 = 𝑀 → (∃𝑣 ∈ Fin ( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑚)𝑑)) ↔ ∃𝑣 ∈ Fin ( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))))
2423ralbidv 2986 . . . 4 (𝑚 = 𝑀 → (∀𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑚)𝑑)) ↔ ∀𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))))
2524elrab 3363 . . 3 (𝑀 ∈ {𝑚 ∈ (Met‘𝑋) ∣ ∀𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑚)𝑑))} ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))))
2616, 25syl6bb 276 . 2 (𝑋 ∈ V → (𝑀 ∈ (TotBnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))))
271, 3, 26pm5.21nii 368 1 (𝑀 ∈ (TotBnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑑 ∈ ℝ+𝑣 ∈ Fin ( 𝑣 = 𝑋 ∧ ∀𝑏𝑣𝑥𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  wrex 2913  {crab 2916  Vcvv 3200   cuni 4436  cfv 5888  (class class class)co 6650  Fincfn 7955  +crp 11832  Metcme 19732  ballcbl 19733  TotBndctotbnd 33565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-totbnd 33567
This theorem is referenced by:  istotbnd2  33569  istotbnd3  33570  totbndmet  33571  totbndss  33576  heibor1  33609  heibor  33620
  Copyright terms: Public domain W3C validator