Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  istotbnd Structured version   Visualization version   Unicode version

Theorem istotbnd 33568
Description: The predicate "is a totally bounded metric space". (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
istotbnd  |-  ( M  e.  ( TotBnd `  X
)  <->  ( M  e.  ( Met `  X
)  /\  A. d  e.  RR+  E. v  e. 
Fin  ( U. v  =  X  /\  A. b  e.  v  E. x  e.  X  b  =  ( x ( ball `  M ) d ) ) ) )
Distinct variable groups:    b, d,
v, x, M    X, b, d, v, x

Proof of Theorem istotbnd
Dummy variables  m  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvex 6221 . 2  |-  ( M  e.  ( TotBnd `  X
)  ->  X  e.  _V )
2 elfvex 6221 . . 3  |-  ( M  e.  ( Met `  X
)  ->  X  e.  _V )
32adantr 481 . 2  |-  ( ( M  e.  ( Met `  X )  /\  A. d  e.  RR+  E. v  e.  Fin  ( U. v  =  X  /\  A. b  e.  v  E. x  e.  X  b  =  ( x ( ball `  M ) d ) ) )  ->  X  e.  _V )
4 fveq2 6191 . . . . . 6  |-  ( y  =  X  ->  ( Met `  y )  =  ( Met `  X
) )
5 eqeq2 2633 . . . . . . . . 9  |-  ( y  =  X  ->  ( U. v  =  y  <->  U. v  =  X ) )
6 rexeq 3139 . . . . . . . . . 10  |-  ( y  =  X  ->  ( E. x  e.  y 
b  =  ( x ( ball `  m
) d )  <->  E. x  e.  X  b  =  ( x ( ball `  m ) d ) ) )
76ralbidv 2986 . . . . . . . . 9  |-  ( y  =  X  ->  ( A. b  e.  v  E. x  e.  y 
b  =  ( x ( ball `  m
) d )  <->  A. b  e.  v  E. x  e.  X  b  =  ( x ( ball `  m ) d ) ) )
85, 7anbi12d 747 . . . . . . . 8  |-  ( y  =  X  ->  (
( U. v  =  y  /\  A. b  e.  v  E. x  e.  y  b  =  ( x ( ball `  m ) d ) )  <->  ( U. v  =  X  /\  A. b  e.  v  E. x  e.  X  b  =  ( x ( ball `  m ) d ) ) ) )
98rexbidv 3052 . . . . . . 7  |-  ( y  =  X  ->  ( E. v  e.  Fin  ( U. v  =  y  /\  A. b  e.  v  E. x  e.  y  b  =  ( x ( ball `  m
) d ) )  <->  E. v  e.  Fin  ( U. v  =  X  /\  A. b  e.  v  E. x  e.  X  b  =  ( x ( ball `  m
) d ) ) ) )
109ralbidv 2986 . . . . . 6  |-  ( y  =  X  ->  ( A. d  e.  RR+  E. v  e.  Fin  ( U. v  =  y  /\  A. b  e.  v  E. x  e.  y  b  =  ( x ( ball `  m ) d ) )  <->  A. d  e.  RR+  E. v  e.  Fin  ( U. v  =  X  /\  A. b  e.  v  E. x  e.  X  b  =  ( x
( ball `  m )
d ) ) ) )
114, 10rabeqbidv 3195 . . . . 5  |-  ( y  =  X  ->  { m  e.  ( Met `  y
)  |  A. d  e.  RR+  E. v  e. 
Fin  ( U. v  =  y  /\  A. b  e.  v  E. x  e.  y  b  =  ( x ( ball `  m ) d ) ) }  =  {
m  e.  ( Met `  X )  |  A. d  e.  RR+  E. v  e.  Fin  ( U. v  =  X  /\  A. b  e.  v  E. x  e.  X  b  =  ( x ( ball `  m ) d ) ) } )
12 df-totbnd 33567 . . . . 5  |-  TotBnd  =  ( y  e.  _V  |->  { m  e.  ( Met `  y )  |  A. d  e.  RR+  E. v  e.  Fin  ( U. v  =  y  /\  A. b  e.  v  E. x  e.  y  b  =  ( x ( ball `  m ) d ) ) } )
13 fvex 6201 . . . . . 6  |-  ( Met `  X )  e.  _V
1413rabex 4813 . . . . 5  |-  { m  e.  ( Met `  X
)  |  A. d  e.  RR+  E. v  e. 
Fin  ( U. v  =  X  /\  A. b  e.  v  E. x  e.  X  b  =  ( x ( ball `  m ) d ) ) }  e.  _V
1511, 12, 14fvmpt 6282 . . . 4  |-  ( X  e.  _V  ->  ( TotBnd `
 X )  =  { m  e.  ( Met `  X )  |  A. d  e.  RR+  E. v  e.  Fin  ( U. v  =  X  /\  A. b  e.  v  E. x  e.  X  b  =  ( x ( ball `  m
) d ) ) } )
1615eleq2d 2687 . . 3  |-  ( X  e.  _V  ->  ( M  e.  ( TotBnd `  X )  <->  M  e.  { m  e.  ( Met `  X )  |  A. d  e.  RR+  E. v  e.  Fin  ( U. v  =  X  /\  A. b  e.  v  E. x  e.  X  b  =  ( x ( ball `  m ) d ) ) } ) )
17 fveq2 6191 . . . . . . . . . . 11  |-  ( m  =  M  ->  ( ball `  m )  =  ( ball `  M
) )
1817oveqd 6667 . . . . . . . . . 10  |-  ( m  =  M  ->  (
x ( ball `  m
) d )  =  ( x ( ball `  M ) d ) )
1918eqeq2d 2632 . . . . . . . . 9  |-  ( m  =  M  ->  (
b  =  ( x ( ball `  m
) d )  <->  b  =  ( x ( ball `  M ) d ) ) )
2019rexbidv 3052 . . . . . . . 8  |-  ( m  =  M  ->  ( E. x  e.  X  b  =  ( x
( ball `  m )
d )  <->  E. x  e.  X  b  =  ( x ( ball `  M ) d ) ) )
2120ralbidv 2986 . . . . . . 7  |-  ( m  =  M  ->  ( A. b  e.  v  E. x  e.  X  b  =  ( x
( ball `  m )
d )  <->  A. b  e.  v  E. x  e.  X  b  =  ( x ( ball `  M ) d ) ) )
2221anbi2d 740 . . . . . 6  |-  ( m  =  M  ->  (
( U. v  =  X  /\  A. b  e.  v  E. x  e.  X  b  =  ( x ( ball `  m ) d ) )  <->  ( U. v  =  X  /\  A. b  e.  v  E. x  e.  X  b  =  ( x ( ball `  M ) d ) ) ) )
2322rexbidv 3052 . . . . 5  |-  ( m  =  M  ->  ( E. v  e.  Fin  ( U. v  =  X  /\  A. b  e.  v  E. x  e.  X  b  =  ( x ( ball `  m
) d ) )  <->  E. v  e.  Fin  ( U. v  =  X  /\  A. b  e.  v  E. x  e.  X  b  =  ( x ( ball `  M
) d ) ) ) )
2423ralbidv 2986 . . . 4  |-  ( m  =  M  ->  ( A. d  e.  RR+  E. v  e.  Fin  ( U. v  =  X  /\  A. b  e.  v  E. x  e.  X  b  =  ( x ( ball `  m ) d ) )  <->  A. d  e.  RR+  E. v  e.  Fin  ( U. v  =  X  /\  A. b  e.  v  E. x  e.  X  b  =  ( x
( ball `  M )
d ) ) ) )
2524elrab 3363 . . 3  |-  ( M  e.  { m  e.  ( Met `  X
)  |  A. d  e.  RR+  E. v  e. 
Fin  ( U. v  =  X  /\  A. b  e.  v  E. x  e.  X  b  =  ( x ( ball `  m ) d ) ) }  <->  ( M  e.  ( Met `  X
)  /\  A. d  e.  RR+  E. v  e. 
Fin  ( U. v  =  X  /\  A. b  e.  v  E. x  e.  X  b  =  ( x ( ball `  M ) d ) ) ) )
2616, 25syl6bb 276 . 2  |-  ( X  e.  _V  ->  ( M  e.  ( TotBnd `  X )  <->  ( M  e.  ( Met `  X
)  /\  A. d  e.  RR+  E. v  e. 
Fin  ( U. v  =  X  /\  A. b  e.  v  E. x  e.  X  b  =  ( x ( ball `  M ) d ) ) ) ) )
271, 3, 26pm5.21nii 368 1  |-  ( M  e.  ( TotBnd `  X
)  <->  ( M  e.  ( Met `  X
)  /\  A. d  e.  RR+  E. v  e. 
Fin  ( U. v  =  X  /\  A. b  e.  v  E. x  e.  X  b  =  ( x ( ball `  M ) d ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200   U.cuni 4436   ` cfv 5888  (class class class)co 6650   Fincfn 7955   RR+crp 11832   Metcme 19732   ballcbl 19733   TotBndctotbnd 33565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-totbnd 33567
This theorem is referenced by:  istotbnd2  33569  istotbnd3  33570  totbndmet  33571  totbndss  33576  heibor1  33609  heibor  33620
  Copyright terms: Public domain W3C validator