| Step | Hyp | Ref
| Expression |
| 1 | | istotbnd 33568 |
. 2
⊢ (𝑀 ∈ (TotBnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑑 ∈ ℝ+ ∃𝑤 ∈ Fin (∪ 𝑤 =
𝑋 ∧ ∀𝑏 ∈ 𝑤 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) |
| 2 | | oveq1 6657 |
. . . . . . . . . . . 12
⊢ (𝑥 = (𝑓‘𝑏) → (𝑥(ball‘𝑀)𝑑) = ((𝑓‘𝑏)(ball‘𝑀)𝑑)) |
| 3 | 2 | eqeq2d 2632 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑓‘𝑏) → (𝑏 = (𝑥(ball‘𝑀)𝑑) ↔ 𝑏 = ((𝑓‘𝑏)(ball‘𝑀)𝑑))) |
| 4 | 3 | ac6sfi 8204 |
. . . . . . . . . 10
⊢ ((𝑤 ∈ Fin ∧ ∀𝑏 ∈ 𝑤 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)) → ∃𝑓(𝑓:𝑤⟶𝑋 ∧ ∀𝑏 ∈ 𝑤 𝑏 = ((𝑓‘𝑏)(ball‘𝑀)𝑑))) |
| 5 | 4 | ex 450 |
. . . . . . . . 9
⊢ (𝑤 ∈ Fin →
(∀𝑏 ∈ 𝑤 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑) → ∃𝑓(𝑓:𝑤⟶𝑋 ∧ ∀𝑏 ∈ 𝑤 𝑏 = ((𝑓‘𝑏)(ball‘𝑀)𝑑)))) |
| 6 | 5 | ad2antlr 763 |
. . . . . . . 8
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑤 ∈ Fin) ∧ ∪ 𝑤 =
𝑋) → (∀𝑏 ∈ 𝑤 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑) → ∃𝑓(𝑓:𝑤⟶𝑋 ∧ ∀𝑏 ∈ 𝑤 𝑏 = ((𝑓‘𝑏)(ball‘𝑀)𝑑)))) |
| 7 | | simprrl 804 |
. . . . . . . . . . . . 13
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑤 ∈ Fin) ∧ (∪ 𝑤 =
𝑋 ∧ (𝑓:𝑤⟶𝑋 ∧ ∀𝑏 ∈ 𝑤 𝑏 = ((𝑓‘𝑏)(ball‘𝑀)𝑑)))) → 𝑓:𝑤⟶𝑋) |
| 8 | | frn 6053 |
. . . . . . . . . . . . 13
⊢ (𝑓:𝑤⟶𝑋 → ran 𝑓 ⊆ 𝑋) |
| 9 | 7, 8 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑤 ∈ Fin) ∧ (∪ 𝑤 =
𝑋 ∧ (𝑓:𝑤⟶𝑋 ∧ ∀𝑏 ∈ 𝑤 𝑏 = ((𝑓‘𝑏)(ball‘𝑀)𝑑)))) → ran 𝑓 ⊆ 𝑋) |
| 10 | | simplr 792 |
. . . . . . . . . . . . 13
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑤 ∈ Fin) ∧ (∪ 𝑤 =
𝑋 ∧ (𝑓:𝑤⟶𝑋 ∧ ∀𝑏 ∈ 𝑤 𝑏 = ((𝑓‘𝑏)(ball‘𝑀)𝑑)))) → 𝑤 ∈ Fin) |
| 11 | | ffn 6045 |
. . . . . . . . . . . . . . 15
⊢ (𝑓:𝑤⟶𝑋 → 𝑓 Fn 𝑤) |
| 12 | 7, 11 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑤 ∈ Fin) ∧ (∪ 𝑤 =
𝑋 ∧ (𝑓:𝑤⟶𝑋 ∧ ∀𝑏 ∈ 𝑤 𝑏 = ((𝑓‘𝑏)(ball‘𝑀)𝑑)))) → 𝑓 Fn 𝑤) |
| 13 | | dffn4 6121 |
. . . . . . . . . . . . . 14
⊢ (𝑓 Fn 𝑤 ↔ 𝑓:𝑤–onto→ran 𝑓) |
| 14 | 12, 13 | sylib 208 |
. . . . . . . . . . . . 13
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑤 ∈ Fin) ∧ (∪ 𝑤 =
𝑋 ∧ (𝑓:𝑤⟶𝑋 ∧ ∀𝑏 ∈ 𝑤 𝑏 = ((𝑓‘𝑏)(ball‘𝑀)𝑑)))) → 𝑓:𝑤–onto→ran 𝑓) |
| 15 | | fofi 8252 |
. . . . . . . . . . . . 13
⊢ ((𝑤 ∈ Fin ∧ 𝑓:𝑤–onto→ran 𝑓) → ran 𝑓 ∈ Fin) |
| 16 | 10, 14, 15 | syl2anc 693 |
. . . . . . . . . . . 12
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑤 ∈ Fin) ∧ (∪ 𝑤 =
𝑋 ∧ (𝑓:𝑤⟶𝑋 ∧ ∀𝑏 ∈ 𝑤 𝑏 = ((𝑓‘𝑏)(ball‘𝑀)𝑑)))) → ran 𝑓 ∈ Fin) |
| 17 | | elfpw 8268 |
. . . . . . . . . . . 12
⊢ (ran
𝑓 ∈ (𝒫 𝑋 ∩ Fin) ↔ (ran 𝑓 ⊆ 𝑋 ∧ ran 𝑓 ∈ Fin)) |
| 18 | 9, 16, 17 | sylanbrc 698 |
. . . . . . . . . . 11
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑤 ∈ Fin) ∧ (∪ 𝑤 =
𝑋 ∧ (𝑓:𝑤⟶𝑋 ∧ ∀𝑏 ∈ 𝑤 𝑏 = ((𝑓‘𝑏)(ball‘𝑀)𝑑)))) → ran 𝑓 ∈ (𝒫 𝑋 ∩ Fin)) |
| 19 | 2 | eleq2d 2687 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = (𝑓‘𝑏) → (𝑣 ∈ (𝑥(ball‘𝑀)𝑑) ↔ 𝑣 ∈ ((𝑓‘𝑏)(ball‘𝑀)𝑑))) |
| 20 | 19 | rexrn 6361 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 Fn 𝑤 → (∃𝑥 ∈ ran 𝑓 𝑣 ∈ (𝑥(ball‘𝑀)𝑑) ↔ ∃𝑏 ∈ 𝑤 𝑣 ∈ ((𝑓‘𝑏)(ball‘𝑀)𝑑))) |
| 21 | 12, 20 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑤 ∈ Fin) ∧ (∪ 𝑤 =
𝑋 ∧ (𝑓:𝑤⟶𝑋 ∧ ∀𝑏 ∈ 𝑤 𝑏 = ((𝑓‘𝑏)(ball‘𝑀)𝑑)))) → (∃𝑥 ∈ ran 𝑓 𝑣 ∈ (𝑥(ball‘𝑀)𝑑) ↔ ∃𝑏 ∈ 𝑤 𝑣 ∈ ((𝑓‘𝑏)(ball‘𝑀)𝑑))) |
| 22 | | eliun 4524 |
. . . . . . . . . . . . . 14
⊢ (𝑣 ∈ ∪ 𝑥 ∈ ran 𝑓(𝑥(ball‘𝑀)𝑑) ↔ ∃𝑥 ∈ ran 𝑓 𝑣 ∈ (𝑥(ball‘𝑀)𝑑)) |
| 23 | | eliun 4524 |
. . . . . . . . . . . . . 14
⊢ (𝑣 ∈ ∪ 𝑏 ∈ 𝑤 ((𝑓‘𝑏)(ball‘𝑀)𝑑) ↔ ∃𝑏 ∈ 𝑤 𝑣 ∈ ((𝑓‘𝑏)(ball‘𝑀)𝑑)) |
| 24 | 21, 22, 23 | 3bitr4g 303 |
. . . . . . . . . . . . 13
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑤 ∈ Fin) ∧ (∪ 𝑤 =
𝑋 ∧ (𝑓:𝑤⟶𝑋 ∧ ∀𝑏 ∈ 𝑤 𝑏 = ((𝑓‘𝑏)(ball‘𝑀)𝑑)))) → (𝑣 ∈ ∪
𝑥 ∈ ran 𝑓(𝑥(ball‘𝑀)𝑑) ↔ 𝑣 ∈ ∪
𝑏 ∈ 𝑤 ((𝑓‘𝑏)(ball‘𝑀)𝑑))) |
| 25 | 24 | eqrdv 2620 |
. . . . . . . . . . . 12
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑤 ∈ Fin) ∧ (∪ 𝑤 =
𝑋 ∧ (𝑓:𝑤⟶𝑋 ∧ ∀𝑏 ∈ 𝑤 𝑏 = ((𝑓‘𝑏)(ball‘𝑀)𝑑)))) → ∪ 𝑥 ∈ ran 𝑓(𝑥(ball‘𝑀)𝑑) = ∪ 𝑏 ∈ 𝑤 ((𝑓‘𝑏)(ball‘𝑀)𝑑)) |
| 26 | | simprrr 805 |
. . . . . . . . . . . . 13
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑤 ∈ Fin) ∧ (∪ 𝑤 =
𝑋 ∧ (𝑓:𝑤⟶𝑋 ∧ ∀𝑏 ∈ 𝑤 𝑏 = ((𝑓‘𝑏)(ball‘𝑀)𝑑)))) → ∀𝑏 ∈ 𝑤 𝑏 = ((𝑓‘𝑏)(ball‘𝑀)𝑑)) |
| 27 | | iuneq2 4537 |
. . . . . . . . . . . . 13
⊢
(∀𝑏 ∈
𝑤 𝑏 = ((𝑓‘𝑏)(ball‘𝑀)𝑑) → ∪
𝑏 ∈ 𝑤 𝑏 = ∪ 𝑏 ∈ 𝑤 ((𝑓‘𝑏)(ball‘𝑀)𝑑)) |
| 28 | 26, 27 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑤 ∈ Fin) ∧ (∪ 𝑤 =
𝑋 ∧ (𝑓:𝑤⟶𝑋 ∧ ∀𝑏 ∈ 𝑤 𝑏 = ((𝑓‘𝑏)(ball‘𝑀)𝑑)))) → ∪ 𝑏 ∈ 𝑤 𝑏 = ∪ 𝑏 ∈ 𝑤 ((𝑓‘𝑏)(ball‘𝑀)𝑑)) |
| 29 | | uniiun 4573 |
. . . . . . . . . . . . 13
⊢ ∪ 𝑤 =
∪ 𝑏 ∈ 𝑤 𝑏 |
| 30 | | simprl 794 |
. . . . . . . . . . . . 13
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑤 ∈ Fin) ∧ (∪ 𝑤 =
𝑋 ∧ (𝑓:𝑤⟶𝑋 ∧ ∀𝑏 ∈ 𝑤 𝑏 = ((𝑓‘𝑏)(ball‘𝑀)𝑑)))) → ∪
𝑤 = 𝑋) |
| 31 | 29, 30 | syl5eqr 2670 |
. . . . . . . . . . . 12
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑤 ∈ Fin) ∧ (∪ 𝑤 =
𝑋 ∧ (𝑓:𝑤⟶𝑋 ∧ ∀𝑏 ∈ 𝑤 𝑏 = ((𝑓‘𝑏)(ball‘𝑀)𝑑)))) → ∪ 𝑏 ∈ 𝑤 𝑏 = 𝑋) |
| 32 | 25, 28, 31 | 3eqtr2d 2662 |
. . . . . . . . . . 11
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑤 ∈ Fin) ∧ (∪ 𝑤 =
𝑋 ∧ (𝑓:𝑤⟶𝑋 ∧ ∀𝑏 ∈ 𝑤 𝑏 = ((𝑓‘𝑏)(ball‘𝑀)𝑑)))) → ∪ 𝑥 ∈ ran 𝑓(𝑥(ball‘𝑀)𝑑) = 𝑋) |
| 33 | | iuneq1 4534 |
. . . . . . . . . . . . 13
⊢ (𝑣 = ran 𝑓 → ∪
𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) = ∪ 𝑥 ∈ ran 𝑓(𝑥(ball‘𝑀)𝑑)) |
| 34 | 33 | eqeq1d 2624 |
. . . . . . . . . . . 12
⊢ (𝑣 = ran 𝑓 → (∪
𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋 ↔ ∪
𝑥 ∈ ran 𝑓(𝑥(ball‘𝑀)𝑑) = 𝑋)) |
| 35 | 34 | rspcev 3309 |
. . . . . . . . . . 11
⊢ ((ran
𝑓 ∈ (𝒫 𝑋 ∩ Fin) ∧ ∪ 𝑥 ∈ ran 𝑓(𝑥(ball‘𝑀)𝑑) = 𝑋) → ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin)∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋) |
| 36 | 18, 32, 35 | syl2anc 693 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑤 ∈ Fin) ∧ (∪ 𝑤 =
𝑋 ∧ (𝑓:𝑤⟶𝑋 ∧ ∀𝑏 ∈ 𝑤 𝑏 = ((𝑓‘𝑏)(ball‘𝑀)𝑑)))) → ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin)∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋) |
| 37 | 36 | expr 643 |
. . . . . . . . 9
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑤 ∈ Fin) ∧ ∪ 𝑤 =
𝑋) → ((𝑓:𝑤⟶𝑋 ∧ ∀𝑏 ∈ 𝑤 𝑏 = ((𝑓‘𝑏)(ball‘𝑀)𝑑)) → ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin)∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋)) |
| 38 | 37 | exlimdv 1861 |
. . . . . . . 8
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑤 ∈ Fin) ∧ ∪ 𝑤 =
𝑋) → (∃𝑓(𝑓:𝑤⟶𝑋 ∧ ∀𝑏 ∈ 𝑤 𝑏 = ((𝑓‘𝑏)(ball‘𝑀)𝑑)) → ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin)∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋)) |
| 39 | 6, 38 | syld 47 |
. . . . . . 7
⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑤 ∈ Fin) ∧ ∪ 𝑤 =
𝑋) → (∀𝑏 ∈ 𝑤 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑) → ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin)∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋)) |
| 40 | 39 | expimpd 629 |
. . . . . 6
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝑤 ∈ Fin) → ((∪ 𝑤 =
𝑋 ∧ ∀𝑏 ∈ 𝑤 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)) → ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin)∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋)) |
| 41 | 40 | rexlimdva 3031 |
. . . . 5
⊢ (𝑀 ∈ (Met‘𝑋) → (∃𝑤 ∈ Fin (∪ 𝑤 =
𝑋 ∧ ∀𝑏 ∈ 𝑤 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)) → ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin)∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋)) |
| 42 | | elfpw 8268 |
. . . . . . . . . . 11
⊢ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ↔ (𝑣 ⊆ 𝑋 ∧ 𝑣 ∈ Fin)) |
| 43 | 42 | simprbi 480 |
. . . . . . . . . 10
⊢ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) → 𝑣 ∈ Fin) |
| 44 | 43 | ad2antrl 764 |
. . . . . . . . 9
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋)) → 𝑣 ∈ Fin) |
| 45 | | mptfi 8265 |
. . . . . . . . 9
⊢ (𝑣 ∈ Fin → (𝑥 ∈ 𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) ∈ Fin) |
| 46 | | rnfi 8249 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) ∈ Fin → ran (𝑥 ∈ 𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) ∈ Fin) |
| 47 | 44, 45, 46 | 3syl 18 |
. . . . . . . 8
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋)) → ran (𝑥 ∈ 𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) ∈ Fin) |
| 48 | | ovex 6678 |
. . . . . . . . . 10
⊢ (𝑥(ball‘𝑀)𝑑) ∈ V |
| 49 | 48 | dfiun3 5380 |
. . . . . . . . 9
⊢ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) = ∪ ran (𝑥 ∈ 𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) |
| 50 | | simprr 796 |
. . . . . . . . 9
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋)) → ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋) |
| 51 | 49, 50 | syl5eqr 2670 |
. . . . . . . 8
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋)) → ∪ ran
(𝑥 ∈ 𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) = 𝑋) |
| 52 | | eqid 2622 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) = (𝑥 ∈ 𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) |
| 53 | 52 | rnmpt 5371 |
. . . . . . . . 9
⊢ ran
(𝑥 ∈ 𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) = {𝑏 ∣ ∃𝑥 ∈ 𝑣 𝑏 = (𝑥(ball‘𝑀)𝑑)} |
| 54 | 42 | simplbi 476 |
. . . . . . . . . . . 12
⊢ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) → 𝑣 ⊆ 𝑋) |
| 55 | 54 | ad2antrl 764 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋)) → 𝑣 ⊆ 𝑋) |
| 56 | | ssrexv 3667 |
. . . . . . . . . . 11
⊢ (𝑣 ⊆ 𝑋 → (∃𝑥 ∈ 𝑣 𝑏 = (𝑥(ball‘𝑀)𝑑) → ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))) |
| 57 | 55, 56 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋)) → (∃𝑥 ∈ 𝑣 𝑏 = (𝑥(ball‘𝑀)𝑑) → ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))) |
| 58 | 57 | ss2abdv 3675 |
. . . . . . . . 9
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋)) → {𝑏 ∣ ∃𝑥 ∈ 𝑣 𝑏 = (𝑥(ball‘𝑀)𝑑)} ⊆ {𝑏 ∣ ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)}) |
| 59 | 53, 58 | syl5eqss 3649 |
. . . . . . . 8
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋)) → ran (𝑥 ∈ 𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) ⊆ {𝑏 ∣ ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)}) |
| 60 | | unieq 4444 |
. . . . . . . . . . 11
⊢ (𝑤 = ran (𝑥 ∈ 𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) → ∪ 𝑤 = ∪
ran (𝑥 ∈ 𝑣 ↦ (𝑥(ball‘𝑀)𝑑))) |
| 61 | 60 | eqeq1d 2624 |
. . . . . . . . . 10
⊢ (𝑤 = ran (𝑥 ∈ 𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) → (∪ 𝑤 = 𝑋 ↔ ∪ ran
(𝑥 ∈ 𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) = 𝑋)) |
| 62 | | ssabral 3673 |
. . . . . . . . . . 11
⊢ (𝑤 ⊆ {𝑏 ∣ ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)} ↔ ∀𝑏 ∈ 𝑤 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)) |
| 63 | | sseq1 3626 |
. . . . . . . . . . 11
⊢ (𝑤 = ran (𝑥 ∈ 𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) → (𝑤 ⊆ {𝑏 ∣ ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)} ↔ ran (𝑥 ∈ 𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) ⊆ {𝑏 ∣ ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)})) |
| 64 | 62, 63 | syl5bbr 274 |
. . . . . . . . . 10
⊢ (𝑤 = ran (𝑥 ∈ 𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) → (∀𝑏 ∈ 𝑤 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑) ↔ ran (𝑥 ∈ 𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) ⊆ {𝑏 ∣ ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)})) |
| 65 | 61, 64 | anbi12d 747 |
. . . . . . . . 9
⊢ (𝑤 = ran (𝑥 ∈ 𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) → ((∪
𝑤 = 𝑋 ∧ ∀𝑏 ∈ 𝑤 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)) ↔ (∪ ran
(𝑥 ∈ 𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) = 𝑋 ∧ ran (𝑥 ∈ 𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) ⊆ {𝑏 ∣ ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)}))) |
| 66 | 65 | rspcev 3309 |
. . . . . . . 8
⊢ ((ran
(𝑥 ∈ 𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) ∈ Fin ∧ (∪ ran (𝑥 ∈ 𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) = 𝑋 ∧ ran (𝑥 ∈ 𝑣 ↦ (𝑥(ball‘𝑀)𝑑)) ⊆ {𝑏 ∣ ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)})) → ∃𝑤 ∈ Fin (∪
𝑤 = 𝑋 ∧ ∀𝑏 ∈ 𝑤 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))) |
| 67 | 47, 51, 59, 66 | syl12anc 1324 |
. . . . . . 7
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ (𝑣 ∈ (𝒫 𝑋 ∩ Fin) ∧ ∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋)) → ∃𝑤 ∈ Fin (∪
𝑤 = 𝑋 ∧ ∀𝑏 ∈ 𝑤 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))) |
| 68 | 67 | expr 643 |
. . . . . 6
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝑣 ∈ (𝒫 𝑋 ∩ Fin)) → (∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋 → ∃𝑤 ∈ Fin (∪
𝑤 = 𝑋 ∧ ∀𝑏 ∈ 𝑤 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) |
| 69 | 68 | rexlimdva 3031 |
. . . . 5
⊢ (𝑀 ∈ (Met‘𝑋) → (∃𝑣 ∈ (𝒫 𝑋 ∩ Fin)∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋 → ∃𝑤 ∈ Fin (∪
𝑤 = 𝑋 ∧ ∀𝑏 ∈ 𝑤 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)))) |
| 70 | 41, 69 | impbid 202 |
. . . 4
⊢ (𝑀 ∈ (Met‘𝑋) → (∃𝑤 ∈ Fin (∪ 𝑤 =
𝑋 ∧ ∀𝑏 ∈ 𝑤 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)) ↔ ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin)∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋)) |
| 71 | 70 | ralbidv 2986 |
. . 3
⊢ (𝑀 ∈ (Met‘𝑋) → (∀𝑑 ∈ ℝ+
∃𝑤 ∈ Fin (∪ 𝑤 =
𝑋 ∧ ∀𝑏 ∈ 𝑤 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑)) ↔ ∀𝑑 ∈ ℝ+ ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin)∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋)) |
| 72 | 71 | pm5.32i 669 |
. 2
⊢ ((𝑀 ∈ (Met‘𝑋) ∧ ∀𝑑 ∈ ℝ+
∃𝑤 ∈ Fin (∪ 𝑤 =
𝑋 ∧ ∀𝑏 ∈ 𝑤 ∃𝑥 ∈ 𝑋 𝑏 = (𝑥(ball‘𝑀)𝑑))) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑑 ∈ ℝ+ ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin)∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋)) |
| 73 | 1, 72 | bitri 264 |
1
⊢ (𝑀 ∈ (TotBnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∀𝑑 ∈ ℝ+ ∃𝑣 ∈ (𝒫 𝑋 ∩ Fin)∪ 𝑥 ∈ 𝑣 (𝑥(ball‘𝑀)𝑑) = 𝑋)) |