MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isust Structured version   Visualization version   GIF version

Theorem isust 22007
Description: The predicate "𝑈 is a uniform structure with base 𝑋." (Contributed by Thierry Arnoux, 15-Nov-2017.) (Revised by AV, 17-Sep-2021.)
Assertion
Ref Expression
isust (𝑋𝑉 → (𝑈 ∈ (UnifOn‘𝑋) ↔ (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑈 ∧ ∀𝑣𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑣𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣)))))
Distinct variable groups:   𝑤,𝑣,𝑈   𝑣,𝑋,𝑤
Allowed substitution hints:   𝑉(𝑤,𝑣)

Proof of Theorem isust
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 ustval 22006 . . 3 (𝑋𝑉 → (UnifOn‘𝑋) = {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑢 ∧ ∀𝑣𝑢 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑢) ∧ ∀𝑤𝑢 (𝑣𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑢 ∧ ∃𝑤𝑢 (𝑤𝑤) ⊆ 𝑣)))})
21eleq2d 2687 . 2 (𝑋𝑉 → (𝑈 ∈ (UnifOn‘𝑋) ↔ 𝑈 ∈ {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑢 ∧ ∀𝑣𝑢 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑢) ∧ ∀𝑤𝑢 (𝑣𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑢 ∧ ∃𝑤𝑢 (𝑤𝑤) ⊆ 𝑣)))}))
3 simp1 1061 . . . 4 ((𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑈 ∧ ∀𝑣𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑣𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣))) → 𝑈 ⊆ 𝒫 (𝑋 × 𝑋))
4 sqxpexg 6963 . . . . . . . 8 (𝑋𝑉 → (𝑋 × 𝑋) ∈ V)
5 pwexg 4850 . . . . . . . 8 ((𝑋 × 𝑋) ∈ V → 𝒫 (𝑋 × 𝑋) ∈ V)
64, 5syl 17 . . . . . . 7 (𝑋𝑉 → 𝒫 (𝑋 × 𝑋) ∈ V)
76adantr 481 . . . . . 6 ((𝑋𝑉𝑈 ⊆ 𝒫 (𝑋 × 𝑋)) → 𝒫 (𝑋 × 𝑋) ∈ V)
8 simpr 477 . . . . . 6 ((𝑋𝑉𝑈 ⊆ 𝒫 (𝑋 × 𝑋)) → 𝑈 ⊆ 𝒫 (𝑋 × 𝑋))
97, 8ssexd 4805 . . . . 5 ((𝑋𝑉𝑈 ⊆ 𝒫 (𝑋 × 𝑋)) → 𝑈 ∈ V)
109ex 450 . . . 4 (𝑋𝑉 → (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) → 𝑈 ∈ V))
113, 10syl5 34 . . 3 (𝑋𝑉 → ((𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑈 ∧ ∀𝑣𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑣𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣))) → 𝑈 ∈ V))
12 sseq1 3626 . . . . 5 (𝑢 = 𝑈 → (𝑢 ⊆ 𝒫 (𝑋 × 𝑋) ↔ 𝑈 ⊆ 𝒫 (𝑋 × 𝑋)))
13 eleq2 2690 . . . . 5 (𝑢 = 𝑈 → ((𝑋 × 𝑋) ∈ 𝑢 ↔ (𝑋 × 𝑋) ∈ 𝑈))
14 eleq2 2690 . . . . . . . . 9 (𝑢 = 𝑈 → (𝑤𝑢𝑤𝑈))
1514imbi2d 330 . . . . . . . 8 (𝑢 = 𝑈 → ((𝑣𝑤𝑤𝑢) ↔ (𝑣𝑤𝑤𝑈)))
1615ralbidv 2986 . . . . . . 7 (𝑢 = 𝑈 → (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑢) ↔ ∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈)))
17 eleq2 2690 . . . . . . . 8 (𝑢 = 𝑈 → ((𝑣𝑤) ∈ 𝑢 ↔ (𝑣𝑤) ∈ 𝑈))
1817raleqbi1dv 3146 . . . . . . 7 (𝑢 = 𝑈 → (∀𝑤𝑢 (𝑣𝑤) ∈ 𝑢 ↔ ∀𝑤𝑈 (𝑣𝑤) ∈ 𝑈))
19 eleq2 2690 . . . . . . . 8 (𝑢 = 𝑈 → (𝑣𝑢𝑣𝑈))
20 rexeq 3139 . . . . . . . 8 (𝑢 = 𝑈 → (∃𝑤𝑢 (𝑤𝑤) ⊆ 𝑣 ↔ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣))
2119, 203anbi23d 1402 . . . . . . 7 (𝑢 = 𝑈 → ((( I ↾ 𝑋) ⊆ 𝑣𝑣𝑢 ∧ ∃𝑤𝑢 (𝑤𝑤) ⊆ 𝑣) ↔ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣)))
2216, 18, 213anbi123d 1399 . . . . . 6 (𝑢 = 𝑈 → ((∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑢) ∧ ∀𝑤𝑢 (𝑣𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑢 ∧ ∃𝑤𝑢 (𝑤𝑤) ⊆ 𝑣)) ↔ (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑣𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣))))
2322raleqbi1dv 3146 . . . . 5 (𝑢 = 𝑈 → (∀𝑣𝑢 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑢) ∧ ∀𝑤𝑢 (𝑣𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑢 ∧ ∃𝑤𝑢 (𝑤𝑤) ⊆ 𝑣)) ↔ ∀𝑣𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑣𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣))))
2412, 13, 233anbi123d 1399 . . . 4 (𝑢 = 𝑈 → ((𝑢 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑢 ∧ ∀𝑣𝑢 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑢) ∧ ∀𝑤𝑢 (𝑣𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑢 ∧ ∃𝑤𝑢 (𝑤𝑤) ⊆ 𝑣))) ↔ (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑈 ∧ ∀𝑣𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑣𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣)))))
2524elab3g 3357 . . 3 (((𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑈 ∧ ∀𝑣𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑣𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣))) → 𝑈 ∈ V) → (𝑈 ∈ {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑢 ∧ ∀𝑣𝑢 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑢) ∧ ∀𝑤𝑢 (𝑣𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑢 ∧ ∃𝑤𝑢 (𝑤𝑤) ⊆ 𝑣)))} ↔ (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑈 ∧ ∀𝑣𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑣𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣)))))
2611, 25syl 17 . 2 (𝑋𝑉 → (𝑈 ∈ {𝑢 ∣ (𝑢 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑢 ∧ ∀𝑣𝑢 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑢) ∧ ∀𝑤𝑢 (𝑣𝑤) ∈ 𝑢 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑢 ∧ ∃𝑤𝑢 (𝑤𝑤) ⊆ 𝑣)))} ↔ (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑈 ∧ ∀𝑣𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑣𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣)))))
272, 26bitrd 268 1 (𝑋𝑉 → (𝑈 ∈ (UnifOn‘𝑋) ↔ (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑈 ∧ ∀𝑣𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑣𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  {cab 2608  wral 2912  wrex 2913  Vcvv 3200  cin 3573  wss 3574  𝒫 cpw 4158   I cid 5023   × cxp 5112  ccnv 5113  cres 5116  ccom 5118  cfv 5888  UnifOncust 22003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-res 5126  df-iota 5851  df-fun 5890  df-fv 5896  df-ust 22004
This theorem is referenced by:  ustssxp  22008  ustssel  22009  ustbasel  22010  ustincl  22011  ustdiag  22012  ustinvel  22013  ustexhalf  22014  ustfilxp  22016  ust0  22023  ustbas2  22029  trust  22033  metust  22363
  Copyright terms: Public domain W3C validator