| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isust | Structured version Visualization version Unicode version | ||
| Description: The predicate " |
| Ref | Expression |
|---|---|
| isust |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ustval 22006 |
. . 3
| |
| 2 | 1 | eleq2d 2687 |
. 2
|
| 3 | simp1 1061 |
. . . 4
| |
| 4 | sqxpexg 6963 |
. . . . . . . 8
| |
| 5 | pwexg 4850 |
. . . . . . . 8
| |
| 6 | 4, 5 | syl 17 |
. . . . . . 7
|
| 7 | 6 | adantr 481 |
. . . . . 6
|
| 8 | simpr 477 |
. . . . . 6
| |
| 9 | 7, 8 | ssexd 4805 |
. . . . 5
|
| 10 | 9 | ex 450 |
. . . 4
|
| 11 | 3, 10 | syl5 34 |
. . 3
|
| 12 | sseq1 3626 |
. . . . 5
| |
| 13 | eleq2 2690 |
. . . . 5
| |
| 14 | eleq2 2690 |
. . . . . . . . 9
| |
| 15 | 14 | imbi2d 330 |
. . . . . . . 8
|
| 16 | 15 | ralbidv 2986 |
. . . . . . 7
|
| 17 | eleq2 2690 |
. . . . . . . 8
| |
| 18 | 17 | raleqbi1dv 3146 |
. . . . . . 7
|
| 19 | eleq2 2690 |
. . . . . . . 8
| |
| 20 | rexeq 3139 |
. . . . . . . 8
| |
| 21 | 19, 20 | 3anbi23d 1402 |
. . . . . . 7
|
| 22 | 16, 18, 21 | 3anbi123d 1399 |
. . . . . 6
|
| 23 | 22 | raleqbi1dv 3146 |
. . . . 5
|
| 24 | 12, 13, 23 | 3anbi123d 1399 |
. . . 4
|
| 25 | 24 | elab3g 3357 |
. . 3
|
| 26 | 11, 25 | syl 17 |
. 2
|
| 27 | 2, 26 | bitrd 268 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-res 5126 df-iota 5851 df-fun 5890 df-fv 5896 df-ust 22004 |
| This theorem is referenced by: ustssxp 22008 ustssel 22009 ustbasel 22010 ustincl 22011 ustdiag 22012 ustinvel 22013 ustexhalf 22014 ustfilxp 22016 ust0 22023 ustbas2 22029 trust 22033 metust 22363 |
| Copyright terms: Public domain | W3C validator |