MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustssel Structured version   Visualization version   GIF version

Theorem ustssel 22009
Description: A uniform structure is upward closed. Condition FI of [BourbakiTop1] p. I.36. (Contributed by Thierry Arnoux, 19-Nov-2017.) (Proof shortened by AV, 17-Sep-2021.)
Assertion
Ref Expression
ustssel ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑊 ⊆ (𝑋 × 𝑋)) → (𝑉𝑊𝑊𝑈))

Proof of Theorem ustssel
Dummy variables 𝑣 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1061 . . . . 5 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑊 ⊆ (𝑋 × 𝑋)) → 𝑈 ∈ (UnifOn‘𝑋))
21elfvexd 6222 . . . . . 6 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑊 ⊆ (𝑋 × 𝑋)) → 𝑋 ∈ V)
3 isust 22007 . . . . . 6 (𝑋 ∈ V → (𝑈 ∈ (UnifOn‘𝑋) ↔ (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑈 ∧ ∀𝑣𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑣𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣)))))
42, 3syl 17 . . . . 5 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑊 ⊆ (𝑋 × 𝑋)) → (𝑈 ∈ (UnifOn‘𝑋) ↔ (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑈 ∧ ∀𝑣𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑣𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣)))))
51, 4mpbid 222 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑊 ⊆ (𝑋 × 𝑋)) → (𝑈 ⊆ 𝒫 (𝑋 × 𝑋) ∧ (𝑋 × 𝑋) ∈ 𝑈 ∧ ∀𝑣𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑣𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣))))
65simp3d 1075 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑊 ⊆ (𝑋 × 𝑋)) → ∀𝑣𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑣𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣)))
7 simp1 1061 . . . 4 ((∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑣𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣)) → ∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈))
87ralimi 2952 . . 3 (∀𝑣𝑈 (∀𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) ∧ ∀𝑤𝑈 (𝑣𝑤) ∈ 𝑈 ∧ (( I ↾ 𝑋) ⊆ 𝑣𝑣𝑈 ∧ ∃𝑤𝑈 (𝑤𝑤) ⊆ 𝑣)) → ∀𝑣𝑈𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈))
96, 8syl 17 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑊 ⊆ (𝑋 × 𝑋)) → ∀𝑣𝑈𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈))
10 simp2 1062 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑊 ⊆ (𝑋 × 𝑋)) → 𝑉𝑈)
11 xpexg 6960 . . . . 5 ((𝑋 ∈ V ∧ 𝑋 ∈ V) → (𝑋 × 𝑋) ∈ V)
122, 2, 11syl2anc 693 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑊 ⊆ (𝑋 × 𝑋)) → (𝑋 × 𝑋) ∈ V)
13 simp3 1063 . . . 4 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑊 ⊆ (𝑋 × 𝑋)) → 𝑊 ⊆ (𝑋 × 𝑋))
1412, 13sselpwd 4807 . . 3 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑊 ⊆ (𝑋 × 𝑋)) → 𝑊 ∈ 𝒫 (𝑋 × 𝑋))
15 sseq1 3626 . . . . 5 (𝑣 = 𝑉 → (𝑣𝑤𝑉𝑤))
1615imbi1d 331 . . . 4 (𝑣 = 𝑉 → ((𝑣𝑤𝑤𝑈) ↔ (𝑉𝑤𝑤𝑈)))
17 sseq2 3627 . . . . 5 (𝑤 = 𝑊 → (𝑉𝑤𝑉𝑊))
18 eleq1 2689 . . . . 5 (𝑤 = 𝑊 → (𝑤𝑈𝑊𝑈))
1917, 18imbi12d 334 . . . 4 (𝑤 = 𝑊 → ((𝑉𝑤𝑤𝑈) ↔ (𝑉𝑊𝑊𝑈)))
2016, 19rspc2v 3322 . . 3 ((𝑉𝑈𝑊 ∈ 𝒫 (𝑋 × 𝑋)) → (∀𝑣𝑈𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) → (𝑉𝑊𝑊𝑈)))
2110, 14, 20syl2anc 693 . 2 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑊 ⊆ (𝑋 × 𝑋)) → (∀𝑣𝑈𝑤 ∈ 𝒫 (𝑋 × 𝑋)(𝑣𝑤𝑤𝑈) → (𝑉𝑊𝑊𝑈)))
229, 21mpd 15 1 ((𝑈 ∈ (UnifOn‘𝑋) ∧ 𝑉𝑈𝑊 ⊆ (𝑋 × 𝑋)) → (𝑉𝑊𝑊𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  w3a 1037   = wceq 1483  wcel 1990  wral 2912  wrex 2913  Vcvv 3200  cin 3573  wss 3574  𝒫 cpw 4158   I cid 5023   × cxp 5112  ccnv 5113  cres 5116  ccom 5118  cfv 5888  UnifOncust 22003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-res 5126  df-iota 5851  df-fun 5890  df-fv 5896  df-ust 22004
This theorem is referenced by:  trust  22033  ustuqtop1  22045  ucnprima  22086
  Copyright terms: Public domain W3C validator