Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iunord Structured version   Visualization version   GIF version

Theorem iunord 42422
Description: The indexed union of a collection of ordinal numbers 𝐵(𝑥) is ordinal. This proof is based on the proof of ssorduni 6985, but does not use it directly, since ssorduni 6985 does not work when 𝐵 is a proper class. (Contributed by Emmett Weisz, 3-Nov-2019.)
Assertion
Ref Expression
iunord (∀𝑥𝐴 Ord 𝐵 → Ord 𝑥𝐴 𝐵)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem iunord
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ordtr 5737 . . . 4 (Ord 𝐵 → Tr 𝐵)
21ralimi 2952 . . 3 (∀𝑥𝐴 Ord 𝐵 → ∀𝑥𝐴 Tr 𝐵)
3 triun 4766 . . 3 (∀𝑥𝐴 Tr 𝐵 → Tr 𝑥𝐴 𝐵)
42, 3syl 17 . 2 (∀𝑥𝐴 Ord 𝐵 → Tr 𝑥𝐴 𝐵)
5 eliun 4524 . . . 4 (𝑦 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝑦𝐵)
6 nfra1 2941 . . . . 5 𝑥𝑥𝐴 Ord 𝐵
7 nfv 1843 . . . . 5 𝑥 𝑦 ∈ On
8 rsp 2929 . . . . . 6 (∀𝑥𝐴 Ord 𝐵 → (𝑥𝐴 → Ord 𝐵))
9 ordelon 5747 . . . . . . 7 ((Ord 𝐵𝑦𝐵) → 𝑦 ∈ On)
109ex 450 . . . . . 6 (Ord 𝐵 → (𝑦𝐵𝑦 ∈ On))
118, 10syl6 35 . . . . 5 (∀𝑥𝐴 Ord 𝐵 → (𝑥𝐴 → (𝑦𝐵𝑦 ∈ On)))
126, 7, 11rexlimd 3026 . . . 4 (∀𝑥𝐴 Ord 𝐵 → (∃𝑥𝐴 𝑦𝐵𝑦 ∈ On))
135, 12syl5bi 232 . . 3 (∀𝑥𝐴 Ord 𝐵 → (𝑦 𝑥𝐴 𝐵𝑦 ∈ On))
1413ssrdv 3609 . 2 (∀𝑥𝐴 Ord 𝐵 𝑥𝐴 𝐵 ⊆ On)
15 ordon 6982 . . 3 Ord On
16 trssord 5740 . . . 4 ((Tr 𝑥𝐴 𝐵 𝑥𝐴 𝐵 ⊆ On ∧ Ord On) → Ord 𝑥𝐴 𝐵)
17163exp 1264 . . 3 (Tr 𝑥𝐴 𝐵 → ( 𝑥𝐴 𝐵 ⊆ On → (Ord On → Ord 𝑥𝐴 𝐵)))
1815, 17mpii 46 . 2 (Tr 𝑥𝐴 𝐵 → ( 𝑥𝐴 𝐵 ⊆ On → Ord 𝑥𝐴 𝐵))
194, 14, 18sylc 65 1 (∀𝑥𝐴 Ord 𝐵 → Ord 𝑥𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 1990  wral 2912  wrex 2913  wss 3574   ciun 4520  Tr wtr 4752  Ord word 5722  Oncon0 5723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726  df-on 5727
This theorem is referenced by:  iunordi  42423
  Copyright terms: Public domain W3C validator