MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trssord Structured version   Visualization version   GIF version

Theorem trssord 5740
Description: A transitive subclass of an ordinal class is ordinal. (Contributed by NM, 29-May-1994.)
Assertion
Ref Expression
trssord ((Tr 𝐴𝐴𝐵 ∧ Ord 𝐵) → Ord 𝐴)

Proof of Theorem trssord
StepHypRef Expression
1 wess 5101 . . . . 5 (𝐴𝐵 → ( E We 𝐵 → E We 𝐴))
2 ordwe 5736 . . . . 5 (Ord 𝐵 → E We 𝐵)
31, 2impel 485 . . . 4 ((𝐴𝐵 ∧ Ord 𝐵) → E We 𝐴)
43anim2i 593 . . 3 ((Tr 𝐴 ∧ (𝐴𝐵 ∧ Ord 𝐵)) → (Tr 𝐴 ∧ E We 𝐴))
543impb 1260 . 2 ((Tr 𝐴𝐴𝐵 ∧ Ord 𝐵) → (Tr 𝐴 ∧ E We 𝐴))
6 df-ord 5726 . 2 (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴))
75, 6sylibr 224 1 ((Tr 𝐴𝐴𝐵 ∧ Ord 𝐵) → Ord 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037  wss 3574  Tr wtr 4752   E cep 5028   We wwe 5072  Ord word 5722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-ral 2917  df-in 3581  df-ss 3588  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726
This theorem is referenced by:  ordin  5753  ssorduni  6985  suceloni  7013  ordom  7074  ordtypelem2  8424  hartogs  8449  card2on  8459  tskwe  8776  ondomon  9385  dford3lem2  37594  dford3  37595  iunord  42422
  Copyright terms: Public domain W3C validator