MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordon Structured version   Visualization version   GIF version

Theorem ordon 6982
Description: The class of all ordinal numbers is ordinal. Proposition 7.12 of [TakeutiZaring] p. 38, but without using the Axiom of Regularity. (Contributed by NM, 17-May-1994.)
Assertion
Ref Expression
ordon Ord On

Proof of Theorem ordon
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tron 5746 . 2 Tr On
2 onfr 5763 . . 3 E Fr On
3 eloni 5733 . . . . 5 (𝑥 ∈ On → Ord 𝑥)
4 eloni 5733 . . . . 5 (𝑦 ∈ On → Ord 𝑦)
5 ordtri3or 5755 . . . . . 6 ((Ord 𝑥 ∧ Ord 𝑦) → (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
6 epel 5032 . . . . . . 7 (𝑥 E 𝑦𝑥𝑦)
7 biid 251 . . . . . . 7 (𝑥 = 𝑦𝑥 = 𝑦)
8 epel 5032 . . . . . . 7 (𝑦 E 𝑥𝑦𝑥)
96, 7, 83orbi123i 1252 . . . . . 6 ((𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥) ↔ (𝑥𝑦𝑥 = 𝑦𝑦𝑥))
105, 9sylibr 224 . . . . 5 ((Ord 𝑥 ∧ Ord 𝑦) → (𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥))
113, 4, 10syl2an 494 . . . 4 ((𝑥 ∈ On ∧ 𝑦 ∈ On) → (𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥))
1211rgen2a 2977 . . 3 𝑥 ∈ On ∀𝑦 ∈ On (𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥)
13 dfwe2 6981 . . 3 ( E We On ↔ ( E Fr On ∧ ∀𝑥 ∈ On ∀𝑦 ∈ On (𝑥 E 𝑦𝑥 = 𝑦𝑦 E 𝑥)))
142, 12, 13mpbir2an 955 . 2 E We On
15 df-ord 5726 . 2 (Ord On ↔ (Tr On ∧ E We On))
161, 14, 15mpbir2an 955 1 Ord On
Colors of variables: wff setvar class
Syntax hints:  wa 384  w3o 1036  wcel 1990  wral 2912   class class class wbr 4653  Tr wtr 4752   E cep 5028   Fr wfr 5070   We wwe 5072  Ord word 5722  Oncon0 5723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726  df-on 5727
This theorem is referenced by:  epweon  6983  onprc  6984  ssorduni  6985  ordeleqon  6988  ordsson  6989  onint  6995  suceloni  7013  limon  7036  tfi  7053  ordom  7074  ordtypelem2  8424  hartogs  8449  card2on  8459  tskwe  8776  alephsmo  8925  ondomon  9385  dford3lem2  37594  dford3  37595  iunord  42422
  Copyright terms: Public domain W3C validator