MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunss2 Structured version   Visualization version   GIF version

Theorem iunss2 4565
Description: A subclass condition on the members of two indexed classes 𝐶(𝑥) and 𝐷(𝑦) that implies a subclass relation on their indexed unions. Generalization of Proposition 8.6 of [TakeutiZaring] p. 59. Compare uniss2 4470. (Contributed by NM, 9-Dec-2004.)
Assertion
Ref Expression
iunss2 (∀𝑥𝐴𝑦𝐵 𝐶𝐷 𝑥𝐴 𝐶 𝑦𝐵 𝐷)
Distinct variable groups:   𝑥,𝑦   𝑥,𝐵   𝑦,𝐶   𝑥,𝐷
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑦)   𝐶(𝑥)   𝐷(𝑦)

Proof of Theorem iunss2
StepHypRef Expression
1 ssiun 4562 . . 3 (∃𝑦𝐵 𝐶𝐷𝐶 𝑦𝐵 𝐷)
21ralimi 2952 . 2 (∀𝑥𝐴𝑦𝐵 𝐶𝐷 → ∀𝑥𝐴 𝐶 𝑦𝐵 𝐷)
3 iunss 4561 . 2 ( 𝑥𝐴 𝐶 𝑦𝐵 𝐷 ↔ ∀𝑥𝐴 𝐶 𝑦𝐵 𝐷)
42, 3sylibr 224 1 (∀𝑥𝐴𝑦𝐵 𝐶𝐷 𝑥𝐴 𝐶 𝑦𝐵 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wral 2912  wrex 2913  wss 3574   ciun 4520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-v 3202  df-in 3581  df-ss 3588  df-iun 4522
This theorem is referenced by:  iunxdif2  4568  oaass  7641  odi  7659  omass  7660  oelim2  7675  cotrclrcl  38034  founiiun  39360  founiiun0  39377  ovnsubaddlem1  40784
  Copyright terms: Public domain W3C validator