| Step | Hyp | Ref
| Expression |
| 1 | | uniiun 4573 |
. . 3
⊢ ∪ 𝐵 =
∪ 𝑦 ∈ 𝐵 𝑦 |
| 2 | 1 | a1i 11 |
. 2
⊢ (𝐹:𝐴–onto→𝐵 → ∪ 𝐵 = ∪ 𝑦 ∈ 𝐵 𝑦) |
| 3 | | simpl 473 |
. . . . . . 7
⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝑦 ∈ 𝐵) → 𝐹:𝐴–onto→𝐵) |
| 4 | | simpr 477 |
. . . . . . 7
⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ 𝐵) |
| 5 | | foelrni 6244 |
. . . . . . 7
⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝑦 ∈ 𝐵) → ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦) |
| 6 | 3, 4, 5 | syl2anc 693 |
. . . . . 6
⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝑦 ∈ 𝐵) → ∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦) |
| 7 | | eqimss2 3658 |
. . . . . . . 8
⊢ ((𝐹‘𝑥) = 𝑦 → 𝑦 ⊆ (𝐹‘𝑥)) |
| 8 | 7 | reximi 3011 |
. . . . . . 7
⊢
(∃𝑥 ∈
𝐴 (𝐹‘𝑥) = 𝑦 → ∃𝑥 ∈ 𝐴 𝑦 ⊆ (𝐹‘𝑥)) |
| 9 | 8 | a1i 11 |
. . . . . 6
⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝑦 ∈ 𝐵) → (∃𝑥 ∈ 𝐴 (𝐹‘𝑥) = 𝑦 → ∃𝑥 ∈ 𝐴 𝑦 ⊆ (𝐹‘𝑥))) |
| 10 | 6, 9 | mpd 15 |
. . . . 5
⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝑦 ∈ 𝐵) → ∃𝑥 ∈ 𝐴 𝑦 ⊆ (𝐹‘𝑥)) |
| 11 | 10 | ralrimiva 2966 |
. . . 4
⊢ (𝐹:𝐴–onto→𝐵 → ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 ⊆ (𝐹‘𝑥)) |
| 12 | | iunss2 4565 |
. . . 4
⊢
(∀𝑦 ∈
𝐵 ∃𝑥 ∈ 𝐴 𝑦 ⊆ (𝐹‘𝑥) → ∪
𝑦 ∈ 𝐵 𝑦 ⊆ ∪
𝑥 ∈ 𝐴 (𝐹‘𝑥)) |
| 13 | 11, 12 | syl 17 |
. . 3
⊢ (𝐹:𝐴–onto→𝐵 → ∪
𝑦 ∈ 𝐵 𝑦 ⊆ ∪
𝑥 ∈ 𝐴 (𝐹‘𝑥)) |
| 14 | | fof 6115 |
. . . . . . 7
⊢ (𝐹:𝐴–onto→𝐵 → 𝐹:𝐴⟶𝐵) |
| 15 | 14 | ffvelrnda 6359 |
. . . . . 6
⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐵) |
| 16 | | ssid 3624 |
. . . . . . 7
⊢ (𝐹‘𝑥) ⊆ (𝐹‘𝑥) |
| 17 | 16 | a1i 11 |
. . . . . 6
⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ⊆ (𝐹‘𝑥)) |
| 18 | | sseq2 3627 |
. . . . . . 7
⊢ (𝑦 = (𝐹‘𝑥) → ((𝐹‘𝑥) ⊆ 𝑦 ↔ (𝐹‘𝑥) ⊆ (𝐹‘𝑥))) |
| 19 | 18 | rspcev 3309 |
. . . . . 6
⊢ (((𝐹‘𝑥) ∈ 𝐵 ∧ (𝐹‘𝑥) ⊆ (𝐹‘𝑥)) → ∃𝑦 ∈ 𝐵 (𝐹‘𝑥) ⊆ 𝑦) |
| 20 | 15, 17, 19 | syl2anc 693 |
. . . . 5
⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐵 (𝐹‘𝑥) ⊆ 𝑦) |
| 21 | 20 | ralrimiva 2966 |
. . . 4
⊢ (𝐹:𝐴–onto→𝐵 → ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝐹‘𝑥) ⊆ 𝑦) |
| 22 | | iunss2 4565 |
. . . 4
⊢
(∀𝑥 ∈
𝐴 ∃𝑦 ∈ 𝐵 (𝐹‘𝑥) ⊆ 𝑦 → ∪
𝑥 ∈ 𝐴 (𝐹‘𝑥) ⊆ ∪
𝑦 ∈ 𝐵 𝑦) |
| 23 | 21, 22 | syl 17 |
. . 3
⊢ (𝐹:𝐴–onto→𝐵 → ∪
𝑥 ∈ 𝐴 (𝐹‘𝑥) ⊆ ∪
𝑦 ∈ 𝐵 𝑦) |
| 24 | 13, 23 | eqssd 3620 |
. 2
⊢ (𝐹:𝐴–onto→𝐵 → ∪
𝑦 ∈ 𝐵 𝑦 = ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥)) |
| 25 | 2, 24 | eqtrd 2656 |
1
⊢ (𝐹:𝐴–onto→𝐵 → ∪ 𝐵 = ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥)) |