MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oaass Structured version   Visualization version   GIF version

Theorem oaass 7641
Description: Ordinal addition is associative. Theorem 25 of [Suppes] p. 211. (Contributed by NM, 10-Dec-2004.)
Assertion
Ref Expression
oaass ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 +𝑜 𝐵) +𝑜 𝐶) = (𝐴 +𝑜 (𝐵 +𝑜 𝐶)))

Proof of Theorem oaass
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6658 . . . . 5 (𝑥 = ∅ → ((𝐴 +𝑜 𝐵) +𝑜 𝑥) = ((𝐴 +𝑜 𝐵) +𝑜 ∅))
2 oveq2 6658 . . . . . 6 (𝑥 = ∅ → (𝐵 +𝑜 𝑥) = (𝐵 +𝑜 ∅))
32oveq2d 6666 . . . . 5 (𝑥 = ∅ → (𝐴 +𝑜 (𝐵 +𝑜 𝑥)) = (𝐴 +𝑜 (𝐵 +𝑜 ∅)))
41, 3eqeq12d 2637 . . . 4 (𝑥 = ∅ → (((𝐴 +𝑜 𝐵) +𝑜 𝑥) = (𝐴 +𝑜 (𝐵 +𝑜 𝑥)) ↔ ((𝐴 +𝑜 𝐵) +𝑜 ∅) = (𝐴 +𝑜 (𝐵 +𝑜 ∅))))
5 oveq2 6658 . . . . 5 (𝑥 = 𝑦 → ((𝐴 +𝑜 𝐵) +𝑜 𝑥) = ((𝐴 +𝑜 𝐵) +𝑜 𝑦))
6 oveq2 6658 . . . . . 6 (𝑥 = 𝑦 → (𝐵 +𝑜 𝑥) = (𝐵 +𝑜 𝑦))
76oveq2d 6666 . . . . 5 (𝑥 = 𝑦 → (𝐴 +𝑜 (𝐵 +𝑜 𝑥)) = (𝐴 +𝑜 (𝐵 +𝑜 𝑦)))
85, 7eqeq12d 2637 . . . 4 (𝑥 = 𝑦 → (((𝐴 +𝑜 𝐵) +𝑜 𝑥) = (𝐴 +𝑜 (𝐵 +𝑜 𝑥)) ↔ ((𝐴 +𝑜 𝐵) +𝑜 𝑦) = (𝐴 +𝑜 (𝐵 +𝑜 𝑦))))
9 oveq2 6658 . . . . 5 (𝑥 = suc 𝑦 → ((𝐴 +𝑜 𝐵) +𝑜 𝑥) = ((𝐴 +𝑜 𝐵) +𝑜 suc 𝑦))
10 oveq2 6658 . . . . . 6 (𝑥 = suc 𝑦 → (𝐵 +𝑜 𝑥) = (𝐵 +𝑜 suc 𝑦))
1110oveq2d 6666 . . . . 5 (𝑥 = suc 𝑦 → (𝐴 +𝑜 (𝐵 +𝑜 𝑥)) = (𝐴 +𝑜 (𝐵 +𝑜 suc 𝑦)))
129, 11eqeq12d 2637 . . . 4 (𝑥 = suc 𝑦 → (((𝐴 +𝑜 𝐵) +𝑜 𝑥) = (𝐴 +𝑜 (𝐵 +𝑜 𝑥)) ↔ ((𝐴 +𝑜 𝐵) +𝑜 suc 𝑦) = (𝐴 +𝑜 (𝐵 +𝑜 suc 𝑦))))
13 oveq2 6658 . . . . 5 (𝑥 = 𝐶 → ((𝐴 +𝑜 𝐵) +𝑜 𝑥) = ((𝐴 +𝑜 𝐵) +𝑜 𝐶))
14 oveq2 6658 . . . . . 6 (𝑥 = 𝐶 → (𝐵 +𝑜 𝑥) = (𝐵 +𝑜 𝐶))
1514oveq2d 6666 . . . . 5 (𝑥 = 𝐶 → (𝐴 +𝑜 (𝐵 +𝑜 𝑥)) = (𝐴 +𝑜 (𝐵 +𝑜 𝐶)))
1613, 15eqeq12d 2637 . . . 4 (𝑥 = 𝐶 → (((𝐴 +𝑜 𝐵) +𝑜 𝑥) = (𝐴 +𝑜 (𝐵 +𝑜 𝑥)) ↔ ((𝐴 +𝑜 𝐵) +𝑜 𝐶) = (𝐴 +𝑜 (𝐵 +𝑜 𝐶))))
17 oacl 7615 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +𝑜 𝐵) ∈ On)
18 oa0 7596 . . . . . 6 ((𝐴 +𝑜 𝐵) ∈ On → ((𝐴 +𝑜 𝐵) +𝑜 ∅) = (𝐴 +𝑜 𝐵))
1917, 18syl 17 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +𝑜 𝐵) +𝑜 ∅) = (𝐴 +𝑜 𝐵))
20 oa0 7596 . . . . . . 7 (𝐵 ∈ On → (𝐵 +𝑜 ∅) = 𝐵)
2120oveq2d 6666 . . . . . 6 (𝐵 ∈ On → (𝐴 +𝑜 (𝐵 +𝑜 ∅)) = (𝐴 +𝑜 𝐵))
2221adantl 482 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +𝑜 (𝐵 +𝑜 ∅)) = (𝐴 +𝑜 𝐵))
2319, 22eqtr4d 2659 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +𝑜 𝐵) +𝑜 ∅) = (𝐴 +𝑜 (𝐵 +𝑜 ∅)))
24 suceq 5790 . . . . . 6 (((𝐴 +𝑜 𝐵) +𝑜 𝑦) = (𝐴 +𝑜 (𝐵 +𝑜 𝑦)) → suc ((𝐴 +𝑜 𝐵) +𝑜 𝑦) = suc (𝐴 +𝑜 (𝐵 +𝑜 𝑦)))
25 oasuc 7604 . . . . . . . 8 (((𝐴 +𝑜 𝐵) ∈ On ∧ 𝑦 ∈ On) → ((𝐴 +𝑜 𝐵) +𝑜 suc 𝑦) = suc ((𝐴 +𝑜 𝐵) +𝑜 𝑦))
2617, 25sylan 488 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑦 ∈ On) → ((𝐴 +𝑜 𝐵) +𝑜 suc 𝑦) = suc ((𝐴 +𝑜 𝐵) +𝑜 𝑦))
27 oasuc 7604 . . . . . . . . . . 11 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 +𝑜 suc 𝑦) = suc (𝐵 +𝑜 𝑦))
2827oveq2d 6666 . . . . . . . . . 10 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴 +𝑜 (𝐵 +𝑜 suc 𝑦)) = (𝐴 +𝑜 suc (𝐵 +𝑜 𝑦)))
2928adantl 482 . . . . . . . . 9 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝑦 ∈ On)) → (𝐴 +𝑜 (𝐵 +𝑜 suc 𝑦)) = (𝐴 +𝑜 suc (𝐵 +𝑜 𝑦)))
30 oacl 7615 . . . . . . . . . 10 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 +𝑜 𝑦) ∈ On)
31 oasuc 7604 . . . . . . . . . 10 ((𝐴 ∈ On ∧ (𝐵 +𝑜 𝑦) ∈ On) → (𝐴 +𝑜 suc (𝐵 +𝑜 𝑦)) = suc (𝐴 +𝑜 (𝐵 +𝑜 𝑦)))
3230, 31sylan2 491 . . . . . . . . 9 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝑦 ∈ On)) → (𝐴 +𝑜 suc (𝐵 +𝑜 𝑦)) = suc (𝐴 +𝑜 (𝐵 +𝑜 𝑦)))
3329, 32eqtrd 2656 . . . . . . . 8 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝑦 ∈ On)) → (𝐴 +𝑜 (𝐵 +𝑜 suc 𝑦)) = suc (𝐴 +𝑜 (𝐵 +𝑜 𝑦)))
3433anassrs 680 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑦 ∈ On) → (𝐴 +𝑜 (𝐵 +𝑜 suc 𝑦)) = suc (𝐴 +𝑜 (𝐵 +𝑜 𝑦)))
3526, 34eqeq12d 2637 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑦 ∈ On) → (((𝐴 +𝑜 𝐵) +𝑜 suc 𝑦) = (𝐴 +𝑜 (𝐵 +𝑜 suc 𝑦)) ↔ suc ((𝐴 +𝑜 𝐵) +𝑜 𝑦) = suc (𝐴 +𝑜 (𝐵 +𝑜 𝑦))))
3624, 35syl5ibr 236 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑦 ∈ On) → (((𝐴 +𝑜 𝐵) +𝑜 𝑦) = (𝐴 +𝑜 (𝐵 +𝑜 𝑦)) → ((𝐴 +𝑜 𝐵) +𝑜 suc 𝑦) = (𝐴 +𝑜 (𝐵 +𝑜 suc 𝑦))))
3736expcom 451 . . . 4 (𝑦 ∈ On → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (((𝐴 +𝑜 𝐵) +𝑜 𝑦) = (𝐴 +𝑜 (𝐵 +𝑜 𝑦)) → ((𝐴 +𝑜 𝐵) +𝑜 suc 𝑦) = (𝐴 +𝑜 (𝐵 +𝑜 suc 𝑦)))))
38 vex 3203 . . . . . . . . . 10 𝑥 ∈ V
39 oalim 7612 . . . . . . . . . 10 (((𝐴 +𝑜 𝐵) ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → ((𝐴 +𝑜 𝐵) +𝑜 𝑥) = 𝑦𝑥 ((𝐴 +𝑜 𝐵) +𝑜 𝑦))
4038, 39mpanr1 719 . . . . . . . . 9 (((𝐴 +𝑜 𝐵) ∈ On ∧ Lim 𝑥) → ((𝐴 +𝑜 𝐵) +𝑜 𝑥) = 𝑦𝑥 ((𝐴 +𝑜 𝐵) +𝑜 𝑦))
4117, 40sylan 488 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ Lim 𝑥) → ((𝐴 +𝑜 𝐵) +𝑜 𝑥) = 𝑦𝑥 ((𝐴 +𝑜 𝐵) +𝑜 𝑦))
4241ancoms 469 . . . . . . 7 ((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → ((𝐴 +𝑜 𝐵) +𝑜 𝑥) = 𝑦𝑥 ((𝐴 +𝑜 𝐵) +𝑜 𝑦))
4342adantr 481 . . . . . 6 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 ((𝐴 +𝑜 𝐵) +𝑜 𝑦) = (𝐴 +𝑜 (𝐵 +𝑜 𝑦))) → ((𝐴 +𝑜 𝐵) +𝑜 𝑥) = 𝑦𝑥 ((𝐴 +𝑜 𝐵) +𝑜 𝑦))
44 oalimcl 7640 . . . . . . . . . . . . 13 ((𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → Lim (𝐵 +𝑜 𝑥))
4538, 44mpanr1 719 . . . . . . . . . . . 12 ((𝐵 ∈ On ∧ Lim 𝑥) → Lim (𝐵 +𝑜 𝑥))
4645ancoms 469 . . . . . . . . . . 11 ((Lim 𝑥𝐵 ∈ On) → Lim (𝐵 +𝑜 𝑥))
47 ovex 6678 . . . . . . . . . . . 12 (𝐵 +𝑜 𝑥) ∈ V
48 oalim 7612 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ ((𝐵 +𝑜 𝑥) ∈ V ∧ Lim (𝐵 +𝑜 𝑥))) → (𝐴 +𝑜 (𝐵 +𝑜 𝑥)) = 𝑧 ∈ (𝐵 +𝑜 𝑥)(𝐴 +𝑜 𝑧))
4947, 48mpanr1 719 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ Lim (𝐵 +𝑜 𝑥)) → (𝐴 +𝑜 (𝐵 +𝑜 𝑥)) = 𝑧 ∈ (𝐵 +𝑜 𝑥)(𝐴 +𝑜 𝑧))
5046, 49sylan2 491 . . . . . . . . . 10 ((𝐴 ∈ On ∧ (Lim 𝑥𝐵 ∈ On)) → (𝐴 +𝑜 (𝐵 +𝑜 𝑥)) = 𝑧 ∈ (𝐵 +𝑜 𝑥)(𝐴 +𝑜 𝑧))
51 limelon 5788 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ V ∧ Lim 𝑥) → 𝑥 ∈ On)
5238, 51mpan 706 . . . . . . . . . . . . . . . . 17 (Lim 𝑥𝑥 ∈ On)
53 oacl 7615 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐵 ∈ On ∧ 𝑥 ∈ On) → (𝐵 +𝑜 𝑥) ∈ On)
5453ancoms 469 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ On ∧ 𝐵 ∈ On) → (𝐵 +𝑜 𝑥) ∈ On)
55 onelon 5748 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝐵 +𝑜 𝑥) ∈ On ∧ 𝑧 ∈ (𝐵 +𝑜 𝑥)) → 𝑧 ∈ On)
5655ex 450 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐵 +𝑜 𝑥) ∈ On → (𝑧 ∈ (𝐵 +𝑜 𝑥) → 𝑧 ∈ On))
5754, 56syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ On ∧ 𝐵 ∈ On) → (𝑧 ∈ (𝐵 +𝑜 𝑥) → 𝑧 ∈ On))
5857adantld 483 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ∈ On ∧ 𝑧 ∈ (𝐵 +𝑜 𝑥)) → 𝑧 ∈ On))
5958adantl 482 . . . . . . . . . . . . . . . . . . 19 ((Lim 𝑥 ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) → ((𝐴 ∈ On ∧ 𝑧 ∈ (𝐵 +𝑜 𝑥)) → 𝑧 ∈ On))
60 0ellim 5787 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (Lim 𝑥 → ∅ ∈ 𝑥)
61 onelss 5766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝐵 ∈ On → (𝑧𝐵𝑧𝐵))
6220sseq2d 3633 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝐵 ∈ On → (𝑧 ⊆ (𝐵 +𝑜 ∅) ↔ 𝑧𝐵))
6361, 62sylibrd 249 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝐵 ∈ On → (𝑧𝐵𝑧 ⊆ (𝐵 +𝑜 ∅)))
6463imp 445 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝐵 ∈ On ∧ 𝑧𝐵) → 𝑧 ⊆ (𝐵 +𝑜 ∅))
65 oveq2 6658 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑦 = ∅ → (𝐵 +𝑜 𝑦) = (𝐵 +𝑜 ∅))
6665sseq2d 3633 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑦 = ∅ → (𝑧 ⊆ (𝐵 +𝑜 𝑦) ↔ 𝑧 ⊆ (𝐵 +𝑜 ∅)))
6766rspcev 3309 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((∅ ∈ 𝑥𝑧 ⊆ (𝐵 +𝑜 ∅)) → ∃𝑦𝑥 𝑧 ⊆ (𝐵 +𝑜 𝑦))
6860, 64, 67syl2an 494 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((Lim 𝑥 ∧ (𝐵 ∈ On ∧ 𝑧𝐵)) → ∃𝑦𝑥 𝑧 ⊆ (𝐵 +𝑜 𝑦))
6968expr 643 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((Lim 𝑥𝐵 ∈ On) → (𝑧𝐵 → ∃𝑦𝑥 𝑧 ⊆ (𝐵 +𝑜 𝑦)))
7069adantrl 752 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((Lim 𝑥 ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) → (𝑧𝐵 → ∃𝑦𝑥 𝑧 ⊆ (𝐵 +𝑜 𝑦)))
7170adantrr 753 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((Lim 𝑥 ∧ ((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑧 ∈ (𝐵 +𝑜 𝑥) ∧ 𝑧 ∈ On))) → (𝑧𝐵 → ∃𝑦𝑥 𝑧 ⊆ (𝐵 +𝑜 𝑦)))
72 oawordex 7637 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝐵 ∈ On ∧ 𝑧 ∈ On) → (𝐵𝑧 ↔ ∃𝑦 ∈ On (𝐵 +𝑜 𝑦) = 𝑧))
7372ad2ant2l 782 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑧 ∈ (𝐵 +𝑜 𝑥) ∧ 𝑧 ∈ On)) → (𝐵𝑧 ↔ ∃𝑦 ∈ On (𝐵 +𝑜 𝑦) = 𝑧))
74 oaord 7627 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝑦 ∈ On ∧ 𝑥 ∈ On ∧ 𝐵 ∈ On) → (𝑦𝑥 ↔ (𝐵 +𝑜 𝑦) ∈ (𝐵 +𝑜 𝑥)))
75743expb 1266 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑦 ∈ On ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) → (𝑦𝑥 ↔ (𝐵 +𝑜 𝑦) ∈ (𝐵 +𝑜 𝑥)))
76 eleq1 2689 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝐵 +𝑜 𝑦) = 𝑧 → ((𝐵 +𝑜 𝑦) ∈ (𝐵 +𝑜 𝑥) ↔ 𝑧 ∈ (𝐵 +𝑜 𝑥)))
7775, 76sylan9bb 736 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (((𝑦 ∈ On ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) ∧ (𝐵 +𝑜 𝑦) = 𝑧) → (𝑦𝑥𝑧 ∈ (𝐵 +𝑜 𝑥)))
7877an32s 846 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑦 ∈ On ∧ (𝐵 +𝑜 𝑦) = 𝑧) ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) → (𝑦𝑥𝑧 ∈ (𝐵 +𝑜 𝑥)))
7978biimpar 502 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝑦 ∈ On ∧ (𝐵 +𝑜 𝑦) = 𝑧) ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝑧 ∈ (𝐵 +𝑜 𝑥)) → 𝑦𝑥)
80 eqimss2 3658 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝐵 +𝑜 𝑦) = 𝑧𝑧 ⊆ (𝐵 +𝑜 𝑦))
8180ad3antlr 767 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝑦 ∈ On ∧ (𝐵 +𝑜 𝑦) = 𝑧) ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝑧 ∈ (𝐵 +𝑜 𝑥)) → 𝑧 ⊆ (𝐵 +𝑜 𝑦))
8279, 81jca 554 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((((𝑦 ∈ On ∧ (𝐵 +𝑜 𝑦) = 𝑧) ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝑧 ∈ (𝐵 +𝑜 𝑥)) → (𝑦𝑥𝑧 ⊆ (𝐵 +𝑜 𝑦)))
8382anasss 679 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑦 ∈ On ∧ (𝐵 +𝑜 𝑦) = 𝑧) ∧ ((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑧 ∈ (𝐵 +𝑜 𝑥))) → (𝑦𝑥𝑧 ⊆ (𝐵 +𝑜 𝑦)))
8483expcom 451 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑧 ∈ (𝐵 +𝑜 𝑥)) → ((𝑦 ∈ On ∧ (𝐵 +𝑜 𝑦) = 𝑧) → (𝑦𝑥𝑧 ⊆ (𝐵 +𝑜 𝑦))))
8584reximdv2 3014 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑧 ∈ (𝐵 +𝑜 𝑥)) → (∃𝑦 ∈ On (𝐵 +𝑜 𝑦) = 𝑧 → ∃𝑦𝑥 𝑧 ⊆ (𝐵 +𝑜 𝑦)))
8685adantrr 753 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑧 ∈ (𝐵 +𝑜 𝑥) ∧ 𝑧 ∈ On)) → (∃𝑦 ∈ On (𝐵 +𝑜 𝑦) = 𝑧 → ∃𝑦𝑥 𝑧 ⊆ (𝐵 +𝑜 𝑦)))
8773, 86sylbid 230 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑧 ∈ (𝐵 +𝑜 𝑥) ∧ 𝑧 ∈ On)) → (𝐵𝑧 → ∃𝑦𝑥 𝑧 ⊆ (𝐵 +𝑜 𝑦)))
8887adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((Lim 𝑥 ∧ ((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑧 ∈ (𝐵 +𝑜 𝑥) ∧ 𝑧 ∈ On))) → (𝐵𝑧 → ∃𝑦𝑥 𝑧 ⊆ (𝐵 +𝑜 𝑦)))
89 eloni 5733 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧 ∈ On → Ord 𝑧)
90 eloni 5733 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝐵 ∈ On → Ord 𝐵)
91 ordtri2or 5822 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((Ord 𝑧 ∧ Ord 𝐵) → (𝑧𝐵𝐵𝑧))
9289, 90, 91syl2anr 495 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐵 ∈ On ∧ 𝑧 ∈ On) → (𝑧𝐵𝐵𝑧))
9392ad2ant2l 782 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑧 ∈ (𝐵 +𝑜 𝑥) ∧ 𝑧 ∈ On)) → (𝑧𝐵𝐵𝑧))
9493adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((Lim 𝑥 ∧ ((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑧 ∈ (𝐵 +𝑜 𝑥) ∧ 𝑧 ∈ On))) → (𝑧𝐵𝐵𝑧))
9571, 88, 94mpjaod 396 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((Lim 𝑥 ∧ ((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ (𝑧 ∈ (𝐵 +𝑜 𝑥) ∧ 𝑧 ∈ On))) → ∃𝑦𝑥 𝑧 ⊆ (𝐵 +𝑜 𝑦))
9695exp45 642 . . . . . . . . . . . . . . . . . . . . . . . 24 (Lim 𝑥 → ((𝑥 ∈ On ∧ 𝐵 ∈ On) → (𝑧 ∈ (𝐵 +𝑜 𝑥) → (𝑧 ∈ On → ∃𝑦𝑥 𝑧 ⊆ (𝐵 +𝑜 𝑦)))))
9796imp 445 . . . . . . . . . . . . . . . . . . . . . . 23 ((Lim 𝑥 ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) → (𝑧 ∈ (𝐵 +𝑜 𝑥) → (𝑧 ∈ On → ∃𝑦𝑥 𝑧 ⊆ (𝐵 +𝑜 𝑦))))
9897adantld 483 . . . . . . . . . . . . . . . . . . . . . 22 ((Lim 𝑥 ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) → ((𝐴 ∈ On ∧ 𝑧 ∈ (𝐵 +𝑜 𝑥)) → (𝑧 ∈ On → ∃𝑦𝑥 𝑧 ⊆ (𝐵 +𝑜 𝑦))))
9998imp32 449 . . . . . . . . . . . . . . . . . . . . 21 (((Lim 𝑥 ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) ∧ ((𝐴 ∈ On ∧ 𝑧 ∈ (𝐵 +𝑜 𝑥)) ∧ 𝑧 ∈ On)) → ∃𝑦𝑥 𝑧 ⊆ (𝐵 +𝑜 𝑦))
100 simplrr 801 . . . . . . . . . . . . . . . . . . . . . . 23 ((((Lim 𝑥 ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) ∧ ((𝐴 ∈ On ∧ 𝑧 ∈ (𝐵 +𝑜 𝑥)) ∧ 𝑧 ∈ On)) ∧ 𝑦𝑥) → 𝑧 ∈ On)
101 onelon 5748 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑦 ∈ On)
102101, 30sylan2 491 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐵 ∈ On ∧ (𝑥 ∈ On ∧ 𝑦𝑥)) → (𝐵 +𝑜 𝑦) ∈ On)
103102exp32 631 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝐵 ∈ On → (𝑥 ∈ On → (𝑦𝑥 → (𝐵 +𝑜 𝑦) ∈ On)))
104103com12 32 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑥 ∈ On → (𝐵 ∈ On → (𝑦𝑥 → (𝐵 +𝑜 𝑦) ∈ On)))
105104imp31 448 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑦𝑥) → (𝐵 +𝑜 𝑦) ∈ On)
106105adantll 750 . . . . . . . . . . . . . . . . . . . . . . . 24 (((Lim 𝑥 ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝑦𝑥) → (𝐵 +𝑜 𝑦) ∈ On)
107106adantlr 751 . . . . . . . . . . . . . . . . . . . . . . 23 ((((Lim 𝑥 ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) ∧ ((𝐴 ∈ On ∧ 𝑧 ∈ (𝐵 +𝑜 𝑥)) ∧ 𝑧 ∈ On)) ∧ 𝑦𝑥) → (𝐵 +𝑜 𝑦) ∈ On)
108 simpll 790 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝐴 ∈ On ∧ 𝑧 ∈ (𝐵 +𝑜 𝑥)) ∧ 𝑧 ∈ On) → 𝐴 ∈ On)
109108ad2antlr 763 . . . . . . . . . . . . . . . . . . . . . . 23 ((((Lim 𝑥 ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) ∧ ((𝐴 ∈ On ∧ 𝑧 ∈ (𝐵 +𝑜 𝑥)) ∧ 𝑧 ∈ On)) ∧ 𝑦𝑥) → 𝐴 ∈ On)
110 oaword 7629 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧 ∈ On ∧ (𝐵 +𝑜 𝑦) ∈ On ∧ 𝐴 ∈ On) → (𝑧 ⊆ (𝐵 +𝑜 𝑦) ↔ (𝐴 +𝑜 𝑧) ⊆ (𝐴 +𝑜 (𝐵 +𝑜 𝑦))))
111100, 107, 109, 110syl3anc 1326 . . . . . . . . . . . . . . . . . . . . . 22 ((((Lim 𝑥 ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) ∧ ((𝐴 ∈ On ∧ 𝑧 ∈ (𝐵 +𝑜 𝑥)) ∧ 𝑧 ∈ On)) ∧ 𝑦𝑥) → (𝑧 ⊆ (𝐵 +𝑜 𝑦) ↔ (𝐴 +𝑜 𝑧) ⊆ (𝐴 +𝑜 (𝐵 +𝑜 𝑦))))
112111rexbidva 3049 . . . . . . . . . . . . . . . . . . . . 21 (((Lim 𝑥 ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) ∧ ((𝐴 ∈ On ∧ 𝑧 ∈ (𝐵 +𝑜 𝑥)) ∧ 𝑧 ∈ On)) → (∃𝑦𝑥 𝑧 ⊆ (𝐵 +𝑜 𝑦) ↔ ∃𝑦𝑥 (𝐴 +𝑜 𝑧) ⊆ (𝐴 +𝑜 (𝐵 +𝑜 𝑦))))
11399, 112mpbid 222 . . . . . . . . . . . . . . . . . . . 20 (((Lim 𝑥 ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) ∧ ((𝐴 ∈ On ∧ 𝑧 ∈ (𝐵 +𝑜 𝑥)) ∧ 𝑧 ∈ On)) → ∃𝑦𝑥 (𝐴 +𝑜 𝑧) ⊆ (𝐴 +𝑜 (𝐵 +𝑜 𝑦)))
114113exp32 631 . . . . . . . . . . . . . . . . . . 19 ((Lim 𝑥 ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) → ((𝐴 ∈ On ∧ 𝑧 ∈ (𝐵 +𝑜 𝑥)) → (𝑧 ∈ On → ∃𝑦𝑥 (𝐴 +𝑜 𝑧) ⊆ (𝐴 +𝑜 (𝐵 +𝑜 𝑦)))))
11559, 114mpdd 43 . . . . . . . . . . . . . . . . . 18 ((Lim 𝑥 ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) → ((𝐴 ∈ On ∧ 𝑧 ∈ (𝐵 +𝑜 𝑥)) → ∃𝑦𝑥 (𝐴 +𝑜 𝑧) ⊆ (𝐴 +𝑜 (𝐵 +𝑜 𝑦))))
116115exp32 631 . . . . . . . . . . . . . . . . 17 (Lim 𝑥 → (𝑥 ∈ On → (𝐵 ∈ On → ((𝐴 ∈ On ∧ 𝑧 ∈ (𝐵 +𝑜 𝑥)) → ∃𝑦𝑥 (𝐴 +𝑜 𝑧) ⊆ (𝐴 +𝑜 (𝐵 +𝑜 𝑦))))))
11752, 116mpd 15 . . . . . . . . . . . . . . . 16 (Lim 𝑥 → (𝐵 ∈ On → ((𝐴 ∈ On ∧ 𝑧 ∈ (𝐵 +𝑜 𝑥)) → ∃𝑦𝑥 (𝐴 +𝑜 𝑧) ⊆ (𝐴 +𝑜 (𝐵 +𝑜 𝑦)))))
118117exp4a 633 . . . . . . . . . . . . . . 15 (Lim 𝑥 → (𝐵 ∈ On → (𝐴 ∈ On → (𝑧 ∈ (𝐵 +𝑜 𝑥) → ∃𝑦𝑥 (𝐴 +𝑜 𝑧) ⊆ (𝐴 +𝑜 (𝐵 +𝑜 𝑦))))))
119118imp31 448 . . . . . . . . . . . . . 14 (((Lim 𝑥𝐵 ∈ On) ∧ 𝐴 ∈ On) → (𝑧 ∈ (𝐵 +𝑜 𝑥) → ∃𝑦𝑥 (𝐴 +𝑜 𝑧) ⊆ (𝐴 +𝑜 (𝐵 +𝑜 𝑦))))
120119ralrimiv 2965 . . . . . . . . . . . . 13 (((Lim 𝑥𝐵 ∈ On) ∧ 𝐴 ∈ On) → ∀𝑧 ∈ (𝐵 +𝑜 𝑥)∃𝑦𝑥 (𝐴 +𝑜 𝑧) ⊆ (𝐴 +𝑜 (𝐵 +𝑜 𝑦)))
121 iunss2 4565 . . . . . . . . . . . . 13 (∀𝑧 ∈ (𝐵 +𝑜 𝑥)∃𝑦𝑥 (𝐴 +𝑜 𝑧) ⊆ (𝐴 +𝑜 (𝐵 +𝑜 𝑦)) → 𝑧 ∈ (𝐵 +𝑜 𝑥)(𝐴 +𝑜 𝑧) ⊆ 𝑦𝑥 (𝐴 +𝑜 (𝐵 +𝑜 𝑦)))
122120, 121syl 17 . . . . . . . . . . . 12 (((Lim 𝑥𝐵 ∈ On) ∧ 𝐴 ∈ On) → 𝑧 ∈ (𝐵 +𝑜 𝑥)(𝐴 +𝑜 𝑧) ⊆ 𝑦𝑥 (𝐴 +𝑜 (𝐵 +𝑜 𝑦)))
123122ancoms 469 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ (Lim 𝑥𝐵 ∈ On)) → 𝑧 ∈ (𝐵 +𝑜 𝑥)(𝐴 +𝑜 𝑧) ⊆ 𝑦𝑥 (𝐴 +𝑜 (𝐵 +𝑜 𝑦)))
124 oaordi 7626 . . . . . . . . . . . . . . . . . . 19 ((𝑥 ∈ On ∧ 𝐵 ∈ On) → (𝑦𝑥 → (𝐵 +𝑜 𝑦) ∈ (𝐵 +𝑜 𝑥)))
125124anim1d 588 . . . . . . . . . . . . . . . . . 18 ((𝑥 ∈ On ∧ 𝐵 ∈ On) → ((𝑦𝑥𝑤 ∈ (𝐴 +𝑜 (𝐵 +𝑜 𝑦))) → ((𝐵 +𝑜 𝑦) ∈ (𝐵 +𝑜 𝑥) ∧ 𝑤 ∈ (𝐴 +𝑜 (𝐵 +𝑜 𝑦)))))
126 oveq2 6658 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = (𝐵 +𝑜 𝑦) → (𝐴 +𝑜 𝑧) = (𝐴 +𝑜 (𝐵 +𝑜 𝑦)))
127126eleq2d 2687 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (𝐵 +𝑜 𝑦) → (𝑤 ∈ (𝐴 +𝑜 𝑧) ↔ 𝑤 ∈ (𝐴 +𝑜 (𝐵 +𝑜 𝑦))))
128127rspcev 3309 . . . . . . . . . . . . . . . . . 18 (((𝐵 +𝑜 𝑦) ∈ (𝐵 +𝑜 𝑥) ∧ 𝑤 ∈ (𝐴 +𝑜 (𝐵 +𝑜 𝑦))) → ∃𝑧 ∈ (𝐵 +𝑜 𝑥)𝑤 ∈ (𝐴 +𝑜 𝑧))
129125, 128syl6 35 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ On ∧ 𝐵 ∈ On) → ((𝑦𝑥𝑤 ∈ (𝐴 +𝑜 (𝐵 +𝑜 𝑦))) → ∃𝑧 ∈ (𝐵 +𝑜 𝑥)𝑤 ∈ (𝐴 +𝑜 𝑧)))
130129expd 452 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ On ∧ 𝐵 ∈ On) → (𝑦𝑥 → (𝑤 ∈ (𝐴 +𝑜 (𝐵 +𝑜 𝑦)) → ∃𝑧 ∈ (𝐵 +𝑜 𝑥)𝑤 ∈ (𝐴 +𝑜 𝑧))))
131130rexlimdv 3030 . . . . . . . . . . . . . . 15 ((𝑥 ∈ On ∧ 𝐵 ∈ On) → (∃𝑦𝑥 𝑤 ∈ (𝐴 +𝑜 (𝐵 +𝑜 𝑦)) → ∃𝑧 ∈ (𝐵 +𝑜 𝑥)𝑤 ∈ (𝐴 +𝑜 𝑧)))
132 eliun 4524 . . . . . . . . . . . . . . 15 (𝑤 𝑦𝑥 (𝐴 +𝑜 (𝐵 +𝑜 𝑦)) ↔ ∃𝑦𝑥 𝑤 ∈ (𝐴 +𝑜 (𝐵 +𝑜 𝑦)))
133 eliun 4524 . . . . . . . . . . . . . . 15 (𝑤 𝑧 ∈ (𝐵 +𝑜 𝑥)(𝐴 +𝑜 𝑧) ↔ ∃𝑧 ∈ (𝐵 +𝑜 𝑥)𝑤 ∈ (𝐴 +𝑜 𝑧))
134131, 132, 1333imtr4g 285 . . . . . . . . . . . . . 14 ((𝑥 ∈ On ∧ 𝐵 ∈ On) → (𝑤 𝑦𝑥 (𝐴 +𝑜 (𝐵 +𝑜 𝑦)) → 𝑤 𝑧 ∈ (𝐵 +𝑜 𝑥)(𝐴 +𝑜 𝑧)))
135134ssrdv 3609 . . . . . . . . . . . . 13 ((𝑥 ∈ On ∧ 𝐵 ∈ On) → 𝑦𝑥 (𝐴 +𝑜 (𝐵 +𝑜 𝑦)) ⊆ 𝑧 ∈ (𝐵 +𝑜 𝑥)(𝐴 +𝑜 𝑧))
13652, 135sylan 488 . . . . . . . . . . . 12 ((Lim 𝑥𝐵 ∈ On) → 𝑦𝑥 (𝐴 +𝑜 (𝐵 +𝑜 𝑦)) ⊆ 𝑧 ∈ (𝐵 +𝑜 𝑥)(𝐴 +𝑜 𝑧))
137136adantl 482 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ (Lim 𝑥𝐵 ∈ On)) → 𝑦𝑥 (𝐴 +𝑜 (𝐵 +𝑜 𝑦)) ⊆ 𝑧 ∈ (𝐵 +𝑜 𝑥)(𝐴 +𝑜 𝑧))
138123, 137eqssd 3620 . . . . . . . . . 10 ((𝐴 ∈ On ∧ (Lim 𝑥𝐵 ∈ On)) → 𝑧 ∈ (𝐵 +𝑜 𝑥)(𝐴 +𝑜 𝑧) = 𝑦𝑥 (𝐴 +𝑜 (𝐵 +𝑜 𝑦)))
13950, 138eqtrd 2656 . . . . . . . . 9 ((𝐴 ∈ On ∧ (Lim 𝑥𝐵 ∈ On)) → (𝐴 +𝑜 (𝐵 +𝑜 𝑥)) = 𝑦𝑥 (𝐴 +𝑜 (𝐵 +𝑜 𝑦)))
140139an12s 843 . . . . . . . 8 ((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → (𝐴 +𝑜 (𝐵 +𝑜 𝑥)) = 𝑦𝑥 (𝐴 +𝑜 (𝐵 +𝑜 𝑦)))
141140adantr 481 . . . . . . 7 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 ((𝐴 +𝑜 𝐵) +𝑜 𝑦) = (𝐴 +𝑜 (𝐵 +𝑜 𝑦))) → (𝐴 +𝑜 (𝐵 +𝑜 𝑥)) = 𝑦𝑥 (𝐴 +𝑜 (𝐵 +𝑜 𝑦)))
142 iuneq2 4537 . . . . . . . 8 (∀𝑦𝑥 ((𝐴 +𝑜 𝐵) +𝑜 𝑦) = (𝐴 +𝑜 (𝐵 +𝑜 𝑦)) → 𝑦𝑥 ((𝐴 +𝑜 𝐵) +𝑜 𝑦) = 𝑦𝑥 (𝐴 +𝑜 (𝐵 +𝑜 𝑦)))
143142adantl 482 . . . . . . 7 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 ((𝐴 +𝑜 𝐵) +𝑜 𝑦) = (𝐴 +𝑜 (𝐵 +𝑜 𝑦))) → 𝑦𝑥 ((𝐴 +𝑜 𝐵) +𝑜 𝑦) = 𝑦𝑥 (𝐴 +𝑜 (𝐵 +𝑜 𝑦)))
144141, 143eqtr4d 2659 . . . . . 6 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 ((𝐴 +𝑜 𝐵) +𝑜 𝑦) = (𝐴 +𝑜 (𝐵 +𝑜 𝑦))) → (𝐴 +𝑜 (𝐵 +𝑜 𝑥)) = 𝑦𝑥 ((𝐴 +𝑜 𝐵) +𝑜 𝑦))
14543, 144eqtr4d 2659 . . . . 5 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 ((𝐴 +𝑜 𝐵) +𝑜 𝑦) = (𝐴 +𝑜 (𝐵 +𝑜 𝑦))) → ((𝐴 +𝑜 𝐵) +𝑜 𝑥) = (𝐴 +𝑜 (𝐵 +𝑜 𝑥)))
146145exp31 630 . . . 4 (Lim 𝑥 → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∀𝑦𝑥 ((𝐴 +𝑜 𝐵) +𝑜 𝑦) = (𝐴 +𝑜 (𝐵 +𝑜 𝑦)) → ((𝐴 +𝑜 𝐵) +𝑜 𝑥) = (𝐴 +𝑜 (𝐵 +𝑜 𝑥)))))
1474, 8, 12, 16, 23, 37, 146tfinds3 7064 . . 3 (𝐶 ∈ On → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 +𝑜 𝐵) +𝑜 𝐶) = (𝐴 +𝑜 (𝐵 +𝑜 𝐶))))
148147com12 32 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐶 ∈ On → ((𝐴 +𝑜 𝐵) +𝑜 𝐶) = (𝐴 +𝑜 (𝐵 +𝑜 𝐶))))
1491483impia 1261 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → ((𝐴 +𝑜 𝐵) +𝑜 𝐶) = (𝐴 +𝑜 (𝐵 +𝑜 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  wrex 2913  Vcvv 3200  wss 3574  c0 3915   ciun 4520  Ord word 5722  Oncon0 5723  Lim wlim 5724  suc csuc 5725  (class class class)co 6650   +𝑜 coa 7557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-oadd 7564
This theorem is referenced by:  odi  7659  oaabs  7724  oaabs2  7725
  Copyright terms: Public domain W3C validator