MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  odi Structured version   Visualization version   GIF version

Theorem odi 7659
Description: Distributive law for ordinal arithmetic (left-distributivity). Proposition 8.25 of [TakeutiZaring] p. 64. (Contributed by NM, 26-Dec-2004.)
Assertion
Ref Expression
odi ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ·𝑜 (𝐵 +𝑜 𝐶)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝐶)))

Proof of Theorem odi
Dummy variables 𝑥 𝑦 𝑧 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6658 . . . . . 6 (𝑥 = ∅ → (𝐵 +𝑜 𝑥) = (𝐵 +𝑜 ∅))
21oveq2d 6666 . . . . 5 (𝑥 = ∅ → (𝐴 ·𝑜 (𝐵 +𝑜 𝑥)) = (𝐴 ·𝑜 (𝐵 +𝑜 ∅)))
3 oveq2 6658 . . . . . 6 (𝑥 = ∅ → (𝐴 ·𝑜 𝑥) = (𝐴 ·𝑜 ∅))
43oveq2d 6666 . . . . 5 (𝑥 = ∅ → ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑥)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 ∅)))
52, 4eqeq12d 2637 . . . 4 (𝑥 = ∅ → ((𝐴 ·𝑜 (𝐵 +𝑜 𝑥)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑥)) ↔ (𝐴 ·𝑜 (𝐵 +𝑜 ∅)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 ∅))))
6 oveq2 6658 . . . . . 6 (𝑥 = 𝑦 → (𝐵 +𝑜 𝑥) = (𝐵 +𝑜 𝑦))
76oveq2d 6666 . . . . 5 (𝑥 = 𝑦 → (𝐴 ·𝑜 (𝐵 +𝑜 𝑥)) = (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)))
8 oveq2 6658 . . . . . 6 (𝑥 = 𝑦 → (𝐴 ·𝑜 𝑥) = (𝐴 ·𝑜 𝑦))
98oveq2d 6666 . . . . 5 (𝑥 = 𝑦 → ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑥)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)))
107, 9eqeq12d 2637 . . . 4 (𝑥 = 𝑦 → ((𝐴 ·𝑜 (𝐵 +𝑜 𝑥)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑥)) ↔ (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦))))
11 oveq2 6658 . . . . . 6 (𝑥 = suc 𝑦 → (𝐵 +𝑜 𝑥) = (𝐵 +𝑜 suc 𝑦))
1211oveq2d 6666 . . . . 5 (𝑥 = suc 𝑦 → (𝐴 ·𝑜 (𝐵 +𝑜 𝑥)) = (𝐴 ·𝑜 (𝐵 +𝑜 suc 𝑦)))
13 oveq2 6658 . . . . . 6 (𝑥 = suc 𝑦 → (𝐴 ·𝑜 𝑥) = (𝐴 ·𝑜 suc 𝑦))
1413oveq2d 6666 . . . . 5 (𝑥 = suc 𝑦 → ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑥)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 suc 𝑦)))
1512, 14eqeq12d 2637 . . . 4 (𝑥 = suc 𝑦 → ((𝐴 ·𝑜 (𝐵 +𝑜 𝑥)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑥)) ↔ (𝐴 ·𝑜 (𝐵 +𝑜 suc 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 suc 𝑦))))
16 oveq2 6658 . . . . . 6 (𝑥 = 𝐶 → (𝐵 +𝑜 𝑥) = (𝐵 +𝑜 𝐶))
1716oveq2d 6666 . . . . 5 (𝑥 = 𝐶 → (𝐴 ·𝑜 (𝐵 +𝑜 𝑥)) = (𝐴 ·𝑜 (𝐵 +𝑜 𝐶)))
18 oveq2 6658 . . . . . 6 (𝑥 = 𝐶 → (𝐴 ·𝑜 𝑥) = (𝐴 ·𝑜 𝐶))
1918oveq2d 6666 . . . . 5 (𝑥 = 𝐶 → ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑥)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝐶)))
2017, 19eqeq12d 2637 . . . 4 (𝑥 = 𝐶 → ((𝐴 ·𝑜 (𝐵 +𝑜 𝑥)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑥)) ↔ (𝐴 ·𝑜 (𝐵 +𝑜 𝐶)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝐶))))
21 omcl 7616 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·𝑜 𝐵) ∈ On)
22 oa0 7596 . . . . . 6 ((𝐴 ·𝑜 𝐵) ∈ On → ((𝐴 ·𝑜 𝐵) +𝑜 ∅) = (𝐴 ·𝑜 𝐵))
2321, 22syl 17 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·𝑜 𝐵) +𝑜 ∅) = (𝐴 ·𝑜 𝐵))
24 om0 7597 . . . . . . 7 (𝐴 ∈ On → (𝐴 ·𝑜 ∅) = ∅)
2524adantr 481 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·𝑜 ∅) = ∅)
2625oveq2d 6666 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 ∅)) = ((𝐴 ·𝑜 𝐵) +𝑜 ∅))
27 oa0 7596 . . . . . . 7 (𝐵 ∈ On → (𝐵 +𝑜 ∅) = 𝐵)
2827adantl 482 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 +𝑜 ∅) = 𝐵)
2928oveq2d 6666 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·𝑜 (𝐵 +𝑜 ∅)) = (𝐴 ·𝑜 𝐵))
3023, 26, 293eqtr4rd 2667 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·𝑜 (𝐵 +𝑜 ∅)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 ∅)))
31 oveq1 6657 . . . . . . . 8 ((𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)) → ((𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) +𝑜 𝐴) = (((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)) +𝑜 𝐴))
32 oasuc 7604 . . . . . . . . . . . 12 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 +𝑜 suc 𝑦) = suc (𝐵 +𝑜 𝑦))
33323adant1 1079 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 +𝑜 suc 𝑦) = suc (𝐵 +𝑜 𝑦))
3433oveq2d 6666 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·𝑜 (𝐵 +𝑜 suc 𝑦)) = (𝐴 ·𝑜 suc (𝐵 +𝑜 𝑦)))
35 oacl 7615 . . . . . . . . . . . 12 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵 +𝑜 𝑦) ∈ On)
36 omsuc 7606 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ (𝐵 +𝑜 𝑦) ∈ On) → (𝐴 ·𝑜 suc (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) +𝑜 𝐴))
3735, 36sylan2 491 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝑦 ∈ On)) → (𝐴 ·𝑜 suc (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) +𝑜 𝐴))
38373impb 1260 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·𝑜 suc (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) +𝑜 𝐴))
3934, 38eqtrd 2656 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·𝑜 (𝐵 +𝑜 suc 𝑦)) = ((𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) +𝑜 𝐴))
40 omsuc 7606 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·𝑜 suc 𝑦) = ((𝐴 ·𝑜 𝑦) +𝑜 𝐴))
41403adant2 1080 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·𝑜 suc 𝑦) = ((𝐴 ·𝑜 𝑦) +𝑜 𝐴))
4241oveq2d 6666 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 suc 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 ((𝐴 ·𝑜 𝑦) +𝑜 𝐴)))
43 omcl 7616 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ·𝑜 𝑦) ∈ On)
44 oaass 7641 . . . . . . . . . . . . . . . . . 18 (((𝐴 ·𝑜 𝐵) ∈ On ∧ (𝐴 ·𝑜 𝑦) ∈ On ∧ 𝐴 ∈ On) → (((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)) +𝑜 𝐴) = ((𝐴 ·𝑜 𝐵) +𝑜 ((𝐴 ·𝑜 𝑦) +𝑜 𝐴)))
4521, 44syl3an1 1359 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 ·𝑜 𝑦) ∈ On ∧ 𝐴 ∈ On) → (((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)) +𝑜 𝐴) = ((𝐴 ·𝑜 𝐵) +𝑜 ((𝐴 ·𝑜 𝑦) +𝑜 𝐴)))
4643, 45syl3an2 1360 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (𝐴 ∈ On ∧ 𝑦 ∈ On) ∧ 𝐴 ∈ On) → (((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)) +𝑜 𝐴) = ((𝐴 ·𝑜 𝐵) +𝑜 ((𝐴 ·𝑜 𝑦) +𝑜 𝐴)))
47463exp 1264 . . . . . . . . . . . . . . 15 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ∈ On ∧ 𝑦 ∈ On) → (𝐴 ∈ On → (((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)) +𝑜 𝐴) = ((𝐴 ·𝑜 𝐵) +𝑜 ((𝐴 ·𝑜 𝑦) +𝑜 𝐴)))))
4847exp4b 632 . . . . . . . . . . . . . 14 (𝐴 ∈ On → (𝐵 ∈ On → (𝐴 ∈ On → (𝑦 ∈ On → (𝐴 ∈ On → (((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)) +𝑜 𝐴) = ((𝐴 ·𝑜 𝐵) +𝑜 ((𝐴 ·𝑜 𝑦) +𝑜 𝐴)))))))
4948pm2.43a 54 . . . . . . . . . . . . 13 (𝐴 ∈ On → (𝐵 ∈ On → (𝑦 ∈ On → (𝐴 ∈ On → (((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)) +𝑜 𝐴) = ((𝐴 ·𝑜 𝐵) +𝑜 ((𝐴 ·𝑜 𝑦) +𝑜 𝐴))))))
5049com4r 94 . . . . . . . . . . . 12 (𝐴 ∈ On → (𝐴 ∈ On → (𝐵 ∈ On → (𝑦 ∈ On → (((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)) +𝑜 𝐴) = ((𝐴 ·𝑜 𝐵) +𝑜 ((𝐴 ·𝑜 𝑦) +𝑜 𝐴))))))
5150pm2.43i 52 . . . . . . . . . . 11 (𝐴 ∈ On → (𝐵 ∈ On → (𝑦 ∈ On → (((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)) +𝑜 𝐴) = ((𝐴 ·𝑜 𝐵) +𝑜 ((𝐴 ·𝑜 𝑦) +𝑜 𝐴)))))
52513imp 1256 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → (((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)) +𝑜 𝐴) = ((𝐴 ·𝑜 𝐵) +𝑜 ((𝐴 ·𝑜 𝑦) +𝑜 𝐴)))
5342, 52eqtr4d 2659 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 suc 𝑦)) = (((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)) +𝑜 𝐴))
5439, 53eqeq12d 2637 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 ·𝑜 (𝐵 +𝑜 suc 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 suc 𝑦)) ↔ ((𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) +𝑜 𝐴) = (((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)) +𝑜 𝐴)))
5531, 54syl5ibr 236 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝑦 ∈ On) → ((𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)) → (𝐴 ·𝑜 (𝐵 +𝑜 suc 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 suc 𝑦))))
56553exp 1264 . . . . . 6 (𝐴 ∈ On → (𝐵 ∈ On → (𝑦 ∈ On → ((𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)) → (𝐴 ·𝑜 (𝐵 +𝑜 suc 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 suc 𝑦))))))
5756com3r 87 . . . . 5 (𝑦 ∈ On → (𝐴 ∈ On → (𝐵 ∈ On → ((𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)) → (𝐴 ·𝑜 (𝐵 +𝑜 suc 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 suc 𝑦))))))
5857impd 447 . . . 4 (𝑦 ∈ On → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)) → (𝐴 ·𝑜 (𝐵 +𝑜 suc 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 suc 𝑦)))))
59 vex 3203 . . . . . . . . . . . . . 14 𝑥 ∈ V
60 limelon 5788 . . . . . . . . . . . . . 14 ((𝑥 ∈ V ∧ Lim 𝑥) → 𝑥 ∈ On)
6159, 60mpan 706 . . . . . . . . . . . . 13 (Lim 𝑥𝑥 ∈ On)
62 oacl 7615 . . . . . . . . . . . . . . 15 ((𝐵 ∈ On ∧ 𝑥 ∈ On) → (𝐵 +𝑜 𝑥) ∈ On)
63 om0r 7619 . . . . . . . . . . . . . . 15 ((𝐵 +𝑜 𝑥) ∈ On → (∅ ·𝑜 (𝐵 +𝑜 𝑥)) = ∅)
6462, 63syl 17 . . . . . . . . . . . . . 14 ((𝐵 ∈ On ∧ 𝑥 ∈ On) → (∅ ·𝑜 (𝐵 +𝑜 𝑥)) = ∅)
65 om0r 7619 . . . . . . . . . . . . . . . 16 (𝐵 ∈ On → (∅ ·𝑜 𝐵) = ∅)
66 om0r 7619 . . . . . . . . . . . . . . . 16 (𝑥 ∈ On → (∅ ·𝑜 𝑥) = ∅)
6765, 66oveqan12d 6669 . . . . . . . . . . . . . . 15 ((𝐵 ∈ On ∧ 𝑥 ∈ On) → ((∅ ·𝑜 𝐵) +𝑜 (∅ ·𝑜 𝑥)) = (∅ +𝑜 ∅))
68 0elon 5778 . . . . . . . . . . . . . . . 16 ∅ ∈ On
69 oa0 7596 . . . . . . . . . . . . . . . 16 (∅ ∈ On → (∅ +𝑜 ∅) = ∅)
7068, 69ax-mp 5 . . . . . . . . . . . . . . 15 (∅ +𝑜 ∅) = ∅
7167, 70syl6req 2673 . . . . . . . . . . . . . 14 ((𝐵 ∈ On ∧ 𝑥 ∈ On) → ∅ = ((∅ ·𝑜 𝐵) +𝑜 (∅ ·𝑜 𝑥)))
7264, 71eqtrd 2656 . . . . . . . . . . . . 13 ((𝐵 ∈ On ∧ 𝑥 ∈ On) → (∅ ·𝑜 (𝐵 +𝑜 𝑥)) = ((∅ ·𝑜 𝐵) +𝑜 (∅ ·𝑜 𝑥)))
7361, 72sylan2 491 . . . . . . . . . . . 12 ((𝐵 ∈ On ∧ Lim 𝑥) → (∅ ·𝑜 (𝐵 +𝑜 𝑥)) = ((∅ ·𝑜 𝐵) +𝑜 (∅ ·𝑜 𝑥)))
7473ancoms 469 . . . . . . . . . . 11 ((Lim 𝑥𝐵 ∈ On) → (∅ ·𝑜 (𝐵 +𝑜 𝑥)) = ((∅ ·𝑜 𝐵) +𝑜 (∅ ·𝑜 𝑥)))
75 oveq1 6657 . . . . . . . . . . . 12 (𝐴 = ∅ → (𝐴 ·𝑜 (𝐵 +𝑜 𝑥)) = (∅ ·𝑜 (𝐵 +𝑜 𝑥)))
76 oveq1 6657 . . . . . . . . . . . . 13 (𝐴 = ∅ → (𝐴 ·𝑜 𝐵) = (∅ ·𝑜 𝐵))
77 oveq1 6657 . . . . . . . . . . . . 13 (𝐴 = ∅ → (𝐴 ·𝑜 𝑥) = (∅ ·𝑜 𝑥))
7876, 77oveq12d 6668 . . . . . . . . . . . 12 (𝐴 = ∅ → ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑥)) = ((∅ ·𝑜 𝐵) +𝑜 (∅ ·𝑜 𝑥)))
7975, 78eqeq12d 2637 . . . . . . . . . . 11 (𝐴 = ∅ → ((𝐴 ·𝑜 (𝐵 +𝑜 𝑥)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑥)) ↔ (∅ ·𝑜 (𝐵 +𝑜 𝑥)) = ((∅ ·𝑜 𝐵) +𝑜 (∅ ·𝑜 𝑥))))
8074, 79syl5ibr 236 . . . . . . . . . 10 (𝐴 = ∅ → ((Lim 𝑥𝐵 ∈ On) → (𝐴 ·𝑜 (𝐵 +𝑜 𝑥)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑥))))
8180expd 452 . . . . . . . . 9 (𝐴 = ∅ → (Lim 𝑥 → (𝐵 ∈ On → (𝐴 ·𝑜 (𝐵 +𝑜 𝑥)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑥)))))
8281com3r 87 . . . . . . . 8 (𝐵 ∈ On → (𝐴 = ∅ → (Lim 𝑥 → (𝐴 ·𝑜 (𝐵 +𝑜 𝑥)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑥)))))
8382imp 445 . . . . . . 7 ((𝐵 ∈ On ∧ 𝐴 = ∅) → (Lim 𝑥 → (𝐴 ·𝑜 (𝐵 +𝑜 𝑥)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑥))))
8483a1dd 50 . . . . . 6 ((𝐵 ∈ On ∧ 𝐴 = ∅) → (Lim 𝑥 → (∀𝑦𝑥 (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)) → (𝐴 ·𝑜 (𝐵 +𝑜 𝑥)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑥)))))
85 simplr 792 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑧 ∈ (𝐵 +𝑜 𝑥)) → 𝐵 ∈ On)
8662ancoms 469 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ On ∧ 𝐵 ∈ On) → (𝐵 +𝑜 𝑥) ∈ On)
87 onelon 5748 . . . . . . . . . . . . . . . . . . . . 21 (((𝐵 +𝑜 𝑥) ∈ On ∧ 𝑧 ∈ (𝐵 +𝑜 𝑥)) → 𝑧 ∈ On)
8886, 87sylan 488 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑧 ∈ (𝐵 +𝑜 𝑥)) → 𝑧 ∈ On)
89 ontri1 5757 . . . . . . . . . . . . . . . . . . . . 21 ((𝐵 ∈ On ∧ 𝑧 ∈ On) → (𝐵𝑧 ↔ ¬ 𝑧𝐵))
90 oawordex 7637 . . . . . . . . . . . . . . . . . . . . 21 ((𝐵 ∈ On ∧ 𝑧 ∈ On) → (𝐵𝑧 ↔ ∃𝑣 ∈ On (𝐵 +𝑜 𝑣) = 𝑧))
9189, 90bitr3d 270 . . . . . . . . . . . . . . . . . . . 20 ((𝐵 ∈ On ∧ 𝑧 ∈ On) → (¬ 𝑧𝐵 ↔ ∃𝑣 ∈ On (𝐵 +𝑜 𝑣) = 𝑧))
9285, 88, 91syl2anc 693 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑧 ∈ (𝐵 +𝑜 𝑥)) → (¬ 𝑧𝐵 ↔ ∃𝑣 ∈ On (𝐵 +𝑜 𝑣) = 𝑧))
93 oaord 7627 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑣 ∈ On ∧ 𝑥 ∈ On ∧ 𝐵 ∈ On) → (𝑣𝑥 ↔ (𝐵 +𝑜 𝑣) ∈ (𝐵 +𝑜 𝑥)))
94933expb 1266 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑣 ∈ On ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) → (𝑣𝑥 ↔ (𝐵 +𝑜 𝑣) ∈ (𝐵 +𝑜 𝑥)))
95 eleq1 2689 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐵 +𝑜 𝑣) = 𝑧 → ((𝐵 +𝑜 𝑣) ∈ (𝐵 +𝑜 𝑥) ↔ 𝑧 ∈ (𝐵 +𝑜 𝑥)))
9694, 95sylan9bb 736 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑣 ∈ On ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) ∧ (𝐵 +𝑜 𝑣) = 𝑧) → (𝑣𝑥𝑧 ∈ (𝐵 +𝑜 𝑥)))
97 iba 524 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐵 +𝑜 𝑣) = 𝑧 → (𝑣𝑥 ↔ (𝑣𝑥 ∧ (𝐵 +𝑜 𝑣) = 𝑧)))
9897adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑣 ∈ On ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) ∧ (𝐵 +𝑜 𝑣) = 𝑧) → (𝑣𝑥 ↔ (𝑣𝑥 ∧ (𝐵 +𝑜 𝑣) = 𝑧)))
9996, 98bitr3d 270 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝑣 ∈ On ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) ∧ (𝐵 +𝑜 𝑣) = 𝑧) → (𝑧 ∈ (𝐵 +𝑜 𝑥) ↔ (𝑣𝑥 ∧ (𝐵 +𝑜 𝑣) = 𝑧)))
10099an32s 846 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝑣 ∈ On ∧ (𝐵 +𝑜 𝑣) = 𝑧) ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) → (𝑧 ∈ (𝐵 +𝑜 𝑥) ↔ (𝑣𝑥 ∧ (𝐵 +𝑜 𝑣) = 𝑧)))
101100biimpcd 239 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 ∈ (𝐵 +𝑜 𝑥) → (((𝑣 ∈ On ∧ (𝐵 +𝑜 𝑣) = 𝑧) ∧ (𝑥 ∈ On ∧ 𝐵 ∈ On)) → (𝑣𝑥 ∧ (𝐵 +𝑜 𝑣) = 𝑧)))
102101exp4c 636 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 ∈ (𝐵 +𝑜 𝑥) → (𝑣 ∈ On → ((𝐵 +𝑜 𝑣) = 𝑧 → ((𝑥 ∈ On ∧ 𝐵 ∈ On) → (𝑣𝑥 ∧ (𝐵 +𝑜 𝑣) = 𝑧)))))
103102com4r 94 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ On ∧ 𝐵 ∈ On) → (𝑧 ∈ (𝐵 +𝑜 𝑥) → (𝑣 ∈ On → ((𝐵 +𝑜 𝑣) = 𝑧 → (𝑣𝑥 ∧ (𝐵 +𝑜 𝑣) = 𝑧)))))
104103imp 445 . . . . . . . . . . . . . . . . . . . 20 (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑧 ∈ (𝐵 +𝑜 𝑥)) → (𝑣 ∈ On → ((𝐵 +𝑜 𝑣) = 𝑧 → (𝑣𝑥 ∧ (𝐵 +𝑜 𝑣) = 𝑧))))
105104reximdvai 3015 . . . . . . . . . . . . . . . . . . 19 (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑧 ∈ (𝐵 +𝑜 𝑥)) → (∃𝑣 ∈ On (𝐵 +𝑜 𝑣) = 𝑧 → ∃𝑣 ∈ On (𝑣𝑥 ∧ (𝐵 +𝑜 𝑣) = 𝑧)))
10692, 105sylbid 230 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑧 ∈ (𝐵 +𝑜 𝑥)) → (¬ 𝑧𝐵 → ∃𝑣 ∈ On (𝑣𝑥 ∧ (𝐵 +𝑜 𝑣) = 𝑧)))
107106orrd 393 . . . . . . . . . . . . . . . . 17 (((𝑥 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑧 ∈ (𝐵 +𝑜 𝑥)) → (𝑧𝐵 ∨ ∃𝑣 ∈ On (𝑣𝑥 ∧ (𝐵 +𝑜 𝑣) = 𝑧)))
10861, 107sylanl1 682 . . . . . . . . . . . . . . . 16 (((Lim 𝑥𝐵 ∈ On) ∧ 𝑧 ∈ (𝐵 +𝑜 𝑥)) → (𝑧𝐵 ∨ ∃𝑣 ∈ On (𝑣𝑥 ∧ (𝐵 +𝑜 𝑣) = 𝑧)))
109108adantlrl 756 . . . . . . . . . . . . . . 15 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝑧 ∈ (𝐵 +𝑜 𝑥)) → (𝑧𝐵 ∨ ∃𝑣 ∈ On (𝑣𝑥 ∧ (𝐵 +𝑜 𝑣) = 𝑧)))
110109adantlr 751 . . . . . . . . . . . . . 14 ((((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)))) ∧ 𝑧 ∈ (𝐵 +𝑜 𝑥)) → (𝑧𝐵 ∨ ∃𝑣 ∈ On (𝑣𝑥 ∧ (𝐵 +𝑜 𝑣) = 𝑧)))
111 0ellim 5787 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (Lim 𝑥 → ∅ ∈ 𝑥)
112 om00el 7656 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (∅ ∈ (𝐴 ·𝑜 𝑥) ↔ (∅ ∈ 𝐴 ∧ ∅ ∈ 𝑥)))
113112biimprd 238 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → ((∅ ∈ 𝐴 ∧ ∅ ∈ 𝑥) → ∅ ∈ (𝐴 ·𝑜 𝑥)))
114111, 113sylan2i 687 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → ((∅ ∈ 𝐴 ∧ Lim 𝑥) → ∅ ∈ (𝐴 ·𝑜 𝑥)))
11561, 114sylan2 491 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴 ∈ On ∧ Lim 𝑥) → ((∅ ∈ 𝐴 ∧ Lim 𝑥) → ∅ ∈ (𝐴 ·𝑜 𝑥)))
116115exp4b 632 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐴 ∈ On → (Lim 𝑥 → (∅ ∈ 𝐴 → (Lim 𝑥 → ∅ ∈ (𝐴 ·𝑜 𝑥)))))
117116com4r 94 . . . . . . . . . . . . . . . . . . . . . . 23 (Lim 𝑥 → (𝐴 ∈ On → (Lim 𝑥 → (∅ ∈ 𝐴 → ∅ ∈ (𝐴 ·𝑜 𝑥)))))
118117pm2.43a 54 . . . . . . . . . . . . . . . . . . . . . 22 (Lim 𝑥 → (𝐴 ∈ On → (∅ ∈ 𝐴 → ∅ ∈ (𝐴 ·𝑜 𝑥))))
119118imp31 448 . . . . . . . . . . . . . . . . . . . . 21 (((Lim 𝑥𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → ∅ ∈ (𝐴 ·𝑜 𝑥))
120119a1d 25 . . . . . . . . . . . . . . . . . . . 20 (((Lim 𝑥𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (𝑧𝐵 → ∅ ∈ (𝐴 ·𝑜 𝑥)))
121120adantlrr 757 . . . . . . . . . . . . . . . . . . 19 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∅ ∈ 𝐴) → (𝑧𝐵 → ∅ ∈ (𝐴 ·𝑜 𝑥)))
122 omordi 7646 . . . . . . . . . . . . . . . . . . . . . 22 (((𝐵 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (𝑧𝐵 → (𝐴 ·𝑜 𝑧) ∈ (𝐴 ·𝑜 𝐵)))
123122ancom1s 847 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → (𝑧𝐵 → (𝐴 ·𝑜 𝑧) ∈ (𝐴 ·𝑜 𝐵)))
124 onelss 5766 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ·𝑜 𝐵) ∈ On → ((𝐴 ·𝑜 𝑧) ∈ (𝐴 ·𝑜 𝐵) → (𝐴 ·𝑜 𝑧) ⊆ (𝐴 ·𝑜 𝐵)))
12522sseq2d 3633 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ·𝑜 𝐵) ∈ On → ((𝐴 ·𝑜 𝑧) ⊆ ((𝐴 ·𝑜 𝐵) +𝑜 ∅) ↔ (𝐴 ·𝑜 𝑧) ⊆ (𝐴 ·𝑜 𝐵)))
126124, 125sylibrd 249 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐴 ·𝑜 𝐵) ∈ On → ((𝐴 ·𝑜 𝑧) ∈ (𝐴 ·𝑜 𝐵) → (𝐴 ·𝑜 𝑧) ⊆ ((𝐴 ·𝑜 𝐵) +𝑜 ∅)))
12721, 126syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·𝑜 𝑧) ∈ (𝐴 ·𝑜 𝐵) → (𝐴 ·𝑜 𝑧) ⊆ ((𝐴 ·𝑜 𝐵) +𝑜 ∅)))
128127adantr 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → ((𝐴 ·𝑜 𝑧) ∈ (𝐴 ·𝑜 𝐵) → (𝐴 ·𝑜 𝑧) ⊆ ((𝐴 ·𝑜 𝐵) +𝑜 ∅)))
129123, 128syld 47 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → (𝑧𝐵 → (𝐴 ·𝑜 𝑧) ⊆ ((𝐴 ·𝑜 𝐵) +𝑜 ∅)))
130129adantll 750 . . . . . . . . . . . . . . . . . . 19 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∅ ∈ 𝐴) → (𝑧𝐵 → (𝐴 ·𝑜 𝑧) ⊆ ((𝐴 ·𝑜 𝐵) +𝑜 ∅)))
131121, 130jcad 555 . . . . . . . . . . . . . . . . . 18 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∅ ∈ 𝐴) → (𝑧𝐵 → (∅ ∈ (𝐴 ·𝑜 𝑥) ∧ (𝐴 ·𝑜 𝑧) ⊆ ((𝐴 ·𝑜 𝐵) +𝑜 ∅))))
132 oveq2 6658 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = ∅ → ((𝐴 ·𝑜 𝐵) +𝑜 𝑤) = ((𝐴 ·𝑜 𝐵) +𝑜 ∅))
133132sseq2d 3633 . . . . . . . . . . . . . . . . . . 19 (𝑤 = ∅ → ((𝐴 ·𝑜 𝑧) ⊆ ((𝐴 ·𝑜 𝐵) +𝑜 𝑤) ↔ (𝐴 ·𝑜 𝑧) ⊆ ((𝐴 ·𝑜 𝐵) +𝑜 ∅)))
134133rspcev 3309 . . . . . . . . . . . . . . . . . 18 ((∅ ∈ (𝐴 ·𝑜 𝑥) ∧ (𝐴 ·𝑜 𝑧) ⊆ ((𝐴 ·𝑜 𝐵) +𝑜 ∅)) → ∃𝑤 ∈ (𝐴 ·𝑜 𝑥)(𝐴 ·𝑜 𝑧) ⊆ ((𝐴 ·𝑜 𝐵) +𝑜 𝑤))
135131, 134syl6 35 . . . . . . . . . . . . . . . . 17 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∅ ∈ 𝐴) → (𝑧𝐵 → ∃𝑤 ∈ (𝐴 ·𝑜 𝑥)(𝐴 ·𝑜 𝑧) ⊆ ((𝐴 ·𝑜 𝐵) +𝑜 𝑤)))
136135adantrr 753 . . . . . . . . . . . . . . . 16 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)))) → (𝑧𝐵 → ∃𝑤 ∈ (𝐴 ·𝑜 𝑥)(𝐴 ·𝑜 𝑧) ⊆ ((𝐴 ·𝑜 𝐵) +𝑜 𝑤)))
137 omordi 7646 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑥 ∈ On ∧ 𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (𝑣𝑥 → (𝐴 ·𝑜 𝑣) ∈ (𝐴 ·𝑜 𝑥)))
13861, 137sylanl1 682 . . . . . . . . . . . . . . . . . . . . . 22 (((Lim 𝑥𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → (𝑣𝑥 → (𝐴 ·𝑜 𝑣) ∈ (𝐴 ·𝑜 𝑥)))
139138adantrd 484 . . . . . . . . . . . . . . . . . . . . 21 (((Lim 𝑥𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → ((𝑣𝑥 ∧ (𝐵 +𝑜 𝑣) = 𝑧) → (𝐴 ·𝑜 𝑣) ∈ (𝐴 ·𝑜 𝑥)))
140139adantrr 753 . . . . . . . . . . . . . . . . . . . 20 (((Lim 𝑥𝐴 ∈ On) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)))) → ((𝑣𝑥 ∧ (𝐵 +𝑜 𝑣) = 𝑧) → (𝐴 ·𝑜 𝑣) ∈ (𝐴 ·𝑜 𝑥)))
141 oveq2 6658 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 = 𝑣 → (𝐵 +𝑜 𝑦) = (𝐵 +𝑜 𝑣))
142141oveq2d 6666 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 = 𝑣 → (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = (𝐴 ·𝑜 (𝐵 +𝑜 𝑣)))
143 oveq2 6658 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 = 𝑣 → (𝐴 ·𝑜 𝑦) = (𝐴 ·𝑜 𝑣))
144143oveq2d 6666 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑦 = 𝑣 → ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑣)))
145142, 144eqeq12d 2637 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = 𝑣 → ((𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)) ↔ (𝐴 ·𝑜 (𝐵 +𝑜 𝑣)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑣))))
146145rspccv 3306 . . . . . . . . . . . . . . . . . . . . . 22 (∀𝑦𝑥 (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)) → (𝑣𝑥 → (𝐴 ·𝑜 (𝐵 +𝑜 𝑣)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑣))))
147 oveq2 6658 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐵 +𝑜 𝑣) = 𝑧 → (𝐴 ·𝑜 (𝐵 +𝑜 𝑣)) = (𝐴 ·𝑜 𝑧))
148 eqeq1 2626 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴 ·𝑜 (𝐵 +𝑜 𝑣)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑣)) → ((𝐴 ·𝑜 (𝐵 +𝑜 𝑣)) = (𝐴 ·𝑜 𝑧) ↔ ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑣)) = (𝐴 ·𝑜 𝑧)))
149147, 148syl5ib 234 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴 ·𝑜 (𝐵 +𝑜 𝑣)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑣)) → ((𝐵 +𝑜 𝑣) = 𝑧 → ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑣)) = (𝐴 ·𝑜 𝑧)))
150 eqimss2 3658 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑣)) = (𝐴 ·𝑜 𝑧) → (𝐴 ·𝑜 𝑧) ⊆ ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑣)))
151149, 150syl6 35 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐴 ·𝑜 (𝐵 +𝑜 𝑣)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑣)) → ((𝐵 +𝑜 𝑣) = 𝑧 → (𝐴 ·𝑜 𝑧) ⊆ ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑣))))
152151imim2i 16 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑣𝑥 → (𝐴 ·𝑜 (𝐵 +𝑜 𝑣)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑣))) → (𝑣𝑥 → ((𝐵 +𝑜 𝑣) = 𝑧 → (𝐴 ·𝑜 𝑧) ⊆ ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑣)))))
153152impd 447 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑣𝑥 → (𝐴 ·𝑜 (𝐵 +𝑜 𝑣)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑣))) → ((𝑣𝑥 ∧ (𝐵 +𝑜 𝑣) = 𝑧) → (𝐴 ·𝑜 𝑧) ⊆ ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑣))))
154146, 153syl 17 . . . . . . . . . . . . . . . . . . . . 21 (∀𝑦𝑥 (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)) → ((𝑣𝑥 ∧ (𝐵 +𝑜 𝑣) = 𝑧) → (𝐴 ·𝑜 𝑧) ⊆ ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑣))))
155154ad2antll 765 . . . . . . . . . . . . . . . . . . . 20 (((Lim 𝑥𝐴 ∈ On) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)))) → ((𝑣𝑥 ∧ (𝐵 +𝑜 𝑣) = 𝑧) → (𝐴 ·𝑜 𝑧) ⊆ ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑣))))
156140, 155jcad 555 . . . . . . . . . . . . . . . . . . 19 (((Lim 𝑥𝐴 ∈ On) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)))) → ((𝑣𝑥 ∧ (𝐵 +𝑜 𝑣) = 𝑧) → ((𝐴 ·𝑜 𝑣) ∈ (𝐴 ·𝑜 𝑥) ∧ (𝐴 ·𝑜 𝑧) ⊆ ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑣)))))
157 oveq2 6658 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 = (𝐴 ·𝑜 𝑣) → ((𝐴 ·𝑜 𝐵) +𝑜 𝑤) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑣)))
158157sseq2d 3633 . . . . . . . . . . . . . . . . . . . 20 (𝑤 = (𝐴 ·𝑜 𝑣) → ((𝐴 ·𝑜 𝑧) ⊆ ((𝐴 ·𝑜 𝐵) +𝑜 𝑤) ↔ (𝐴 ·𝑜 𝑧) ⊆ ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑣))))
159158rspcev 3309 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ·𝑜 𝑣) ∈ (𝐴 ·𝑜 𝑥) ∧ (𝐴 ·𝑜 𝑧) ⊆ ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑣))) → ∃𝑤 ∈ (𝐴 ·𝑜 𝑥)(𝐴 ·𝑜 𝑧) ⊆ ((𝐴 ·𝑜 𝐵) +𝑜 𝑤))
160156, 159syl6 35 . . . . . . . . . . . . . . . . . 18 (((Lim 𝑥𝐴 ∈ On) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)))) → ((𝑣𝑥 ∧ (𝐵 +𝑜 𝑣) = 𝑧) → ∃𝑤 ∈ (𝐴 ·𝑜 𝑥)(𝐴 ·𝑜 𝑧) ⊆ ((𝐴 ·𝑜 𝐵) +𝑜 𝑤)))
161160rexlimdvw 3034 . . . . . . . . . . . . . . . . 17 (((Lim 𝑥𝐴 ∈ On) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)))) → (∃𝑣 ∈ On (𝑣𝑥 ∧ (𝐵 +𝑜 𝑣) = 𝑧) → ∃𝑤 ∈ (𝐴 ·𝑜 𝑥)(𝐴 ·𝑜 𝑧) ⊆ ((𝐴 ·𝑜 𝐵) +𝑜 𝑤)))
162161adantlrr 757 . . . . . . . . . . . . . . . 16 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)))) → (∃𝑣 ∈ On (𝑣𝑥 ∧ (𝐵 +𝑜 𝑣) = 𝑧) → ∃𝑤 ∈ (𝐴 ·𝑜 𝑥)(𝐴 ·𝑜 𝑧) ⊆ ((𝐴 ·𝑜 𝐵) +𝑜 𝑤)))
163136, 162jaod 395 . . . . . . . . . . . . . . 15 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)))) → ((𝑧𝐵 ∨ ∃𝑣 ∈ On (𝑣𝑥 ∧ (𝐵 +𝑜 𝑣) = 𝑧)) → ∃𝑤 ∈ (𝐴 ·𝑜 𝑥)(𝐴 ·𝑜 𝑧) ⊆ ((𝐴 ·𝑜 𝐵) +𝑜 𝑤)))
164163adantr 481 . . . . . . . . . . . . . 14 ((((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)))) ∧ 𝑧 ∈ (𝐵 +𝑜 𝑥)) → ((𝑧𝐵 ∨ ∃𝑣 ∈ On (𝑣𝑥 ∧ (𝐵 +𝑜 𝑣) = 𝑧)) → ∃𝑤 ∈ (𝐴 ·𝑜 𝑥)(𝐴 ·𝑜 𝑧) ⊆ ((𝐴 ·𝑜 𝐵) +𝑜 𝑤)))
165110, 164mpd 15 . . . . . . . . . . . . 13 ((((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)))) ∧ 𝑧 ∈ (𝐵 +𝑜 𝑥)) → ∃𝑤 ∈ (𝐴 ·𝑜 𝑥)(𝐴 ·𝑜 𝑧) ⊆ ((𝐴 ·𝑜 𝐵) +𝑜 𝑤))
166165ralrimiva 2966 . . . . . . . . . . . 12 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)))) → ∀𝑧 ∈ (𝐵 +𝑜 𝑥)∃𝑤 ∈ (𝐴 ·𝑜 𝑥)(𝐴 ·𝑜 𝑧) ⊆ ((𝐴 ·𝑜 𝐵) +𝑜 𝑤))
167 iunss2 4565 . . . . . . . . . . . 12 (∀𝑧 ∈ (𝐵 +𝑜 𝑥)∃𝑤 ∈ (𝐴 ·𝑜 𝑥)(𝐴 ·𝑜 𝑧) ⊆ ((𝐴 ·𝑜 𝐵) +𝑜 𝑤) → 𝑧 ∈ (𝐵 +𝑜 𝑥)(𝐴 ·𝑜 𝑧) ⊆ 𝑤 ∈ (𝐴 ·𝑜 𝑥)((𝐴 ·𝑜 𝐵) +𝑜 𝑤))
168166, 167syl 17 . . . . . . . . . . 11 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)))) → 𝑧 ∈ (𝐵 +𝑜 𝑥)(𝐴 ·𝑜 𝑧) ⊆ 𝑤 ∈ (𝐴 ·𝑜 𝑥)((𝐴 ·𝑜 𝐵) +𝑜 𝑤))
169 omordlim 7657 . . . . . . . . . . . . . . . . . . . . 21 (((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ 𝑤 ∈ (𝐴 ·𝑜 𝑥)) → ∃𝑣𝑥 𝑤 ∈ (𝐴 ·𝑜 𝑣))
170169ex 450 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → (𝑤 ∈ (𝐴 ·𝑜 𝑥) → ∃𝑣𝑥 𝑤 ∈ (𝐴 ·𝑜 𝑣)))
17159, 170mpanr1 719 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ On ∧ Lim 𝑥) → (𝑤 ∈ (𝐴 ·𝑜 𝑥) → ∃𝑣𝑥 𝑤 ∈ (𝐴 ·𝑜 𝑣)))
172171ancoms 469 . . . . . . . . . . . . . . . . . 18 ((Lim 𝑥𝐴 ∈ On) → (𝑤 ∈ (𝐴 ·𝑜 𝑥) → ∃𝑣𝑥 𝑤 ∈ (𝐴 ·𝑜 𝑣)))
173172imp 445 . . . . . . . . . . . . . . . . 17 (((Lim 𝑥𝐴 ∈ On) ∧ 𝑤 ∈ (𝐴 ·𝑜 𝑥)) → ∃𝑣𝑥 𝑤 ∈ (𝐴 ·𝑜 𝑣))
174173adantlrr 757 . . . . . . . . . . . . . . . 16 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝑤 ∈ (𝐴 ·𝑜 𝑥)) → ∃𝑣𝑥 𝑤 ∈ (𝐴 ·𝑜 𝑣))
175174adantlr 751 . . . . . . . . . . . . . . 15 ((((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦))) ∧ 𝑤 ∈ (𝐴 ·𝑜 𝑥)) → ∃𝑣𝑥 𝑤 ∈ (𝐴 ·𝑜 𝑣))
176 oaordi 7626 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑥 ∈ On ∧ 𝐵 ∈ On) → (𝑣𝑥 → (𝐵 +𝑜 𝑣) ∈ (𝐵 +𝑜 𝑥)))
17761, 176sylan 488 . . . . . . . . . . . . . . . . . . . . . . 23 ((Lim 𝑥𝐵 ∈ On) → (𝑣𝑥 → (𝐵 +𝑜 𝑣) ∈ (𝐵 +𝑜 𝑥)))
178177imp 445 . . . . . . . . . . . . . . . . . . . . . 22 (((Lim 𝑥𝐵 ∈ On) ∧ 𝑣𝑥) → (𝐵 +𝑜 𝑣) ∈ (𝐵 +𝑜 𝑥))
179178adantlrl 756 . . . . . . . . . . . . . . . . . . . . 21 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝑣𝑥) → (𝐵 +𝑜 𝑣) ∈ (𝐵 +𝑜 𝑥))
180179a1d 25 . . . . . . . . . . . . . . . . . . . 20 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝑣𝑥) → (𝑤 ∈ (𝐴 ·𝑜 𝑣) → (𝐵 +𝑜 𝑣) ∈ (𝐵 +𝑜 𝑥)))
181180adantlr 751 . . . . . . . . . . . . . . . . . . 19 ((((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦))) ∧ 𝑣𝑥) → (𝑤 ∈ (𝐴 ·𝑜 𝑣) → (𝐵 +𝑜 𝑣) ∈ (𝐵 +𝑜 𝑥)))
182 limord 5784 . . . . . . . . . . . . . . . . . . . . . . . . 25 (Lim 𝑥 → Ord 𝑥)
183 ordelon 5747 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((Ord 𝑥𝑣𝑥) → 𝑣 ∈ On)
184182, 183sylan 488 . . . . . . . . . . . . . . . . . . . . . . . 24 ((Lim 𝑥𝑣𝑥) → 𝑣 ∈ On)
185 omcl 7616 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐴 ∈ On ∧ 𝑣 ∈ On) → (𝐴 ·𝑜 𝑣) ∈ On)
186185ancoms 469 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑣 ∈ On ∧ 𝐴 ∈ On) → (𝐴 ·𝑜 𝑣) ∈ On)
187186adantrr 753 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑣 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → (𝐴 ·𝑜 𝑣) ∈ On)
18821adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑣 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → (𝐴 ·𝑜 𝐵) ∈ On)
189 oaordi 7626 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝐴 ·𝑜 𝑣) ∈ On ∧ (𝐴 ·𝑜 𝐵) ∈ On) → (𝑤 ∈ (𝐴 ·𝑜 𝑣) → ((𝐴 ·𝑜 𝐵) +𝑜 𝑤) ∈ ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑣))))
190187, 188, 189syl2anc 693 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑣 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → (𝑤 ∈ (𝐴 ·𝑜 𝑣) → ((𝐴 ·𝑜 𝐵) +𝑜 𝑤) ∈ ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑣))))
191184, 190sylan 488 . . . . . . . . . . . . . . . . . . . . . . 23 (((Lim 𝑥𝑣𝑥) ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → (𝑤 ∈ (𝐴 ·𝑜 𝑣) → ((𝐴 ·𝑜 𝐵) +𝑜 𝑤) ∈ ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑣))))
192191an32s 846 . . . . . . . . . . . . . . . . . . . . . 22 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝑣𝑥) → (𝑤 ∈ (𝐴 ·𝑜 𝑣) → ((𝐴 ·𝑜 𝐵) +𝑜 𝑤) ∈ ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑣))))
193192adantlr 751 . . . . . . . . . . . . . . . . . . . . 21 ((((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦))) ∧ 𝑣𝑥) → (𝑤 ∈ (𝐴 ·𝑜 𝑣) → ((𝐴 ·𝑜 𝐵) +𝑜 𝑤) ∈ ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑣))))
194145rspccva 3308 . . . . . . . . . . . . . . . . . . . . . . 23 ((∀𝑦𝑥 (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)) ∧ 𝑣𝑥) → (𝐴 ·𝑜 (𝐵 +𝑜 𝑣)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑣)))
195194eleq2d 2687 . . . . . . . . . . . . . . . . . . . . . 22 ((∀𝑦𝑥 (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)) ∧ 𝑣𝑥) → (((𝐴 ·𝑜 𝐵) +𝑜 𝑤) ∈ (𝐴 ·𝑜 (𝐵 +𝑜 𝑣)) ↔ ((𝐴 ·𝑜 𝐵) +𝑜 𝑤) ∈ ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑣))))
196195adantll 750 . . . . . . . . . . . . . . . . . . . . 21 ((((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦))) ∧ 𝑣𝑥) → (((𝐴 ·𝑜 𝐵) +𝑜 𝑤) ∈ (𝐴 ·𝑜 (𝐵 +𝑜 𝑣)) ↔ ((𝐴 ·𝑜 𝐵) +𝑜 𝑤) ∈ ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑣))))
197193, 196sylibrd 249 . . . . . . . . . . . . . . . . . . . 20 ((((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦))) ∧ 𝑣𝑥) → (𝑤 ∈ (𝐴 ·𝑜 𝑣) → ((𝐴 ·𝑜 𝐵) +𝑜 𝑤) ∈ (𝐴 ·𝑜 (𝐵 +𝑜 𝑣))))
198 oacl 7615 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐵 ∈ On ∧ 𝑣 ∈ On) → (𝐵 +𝑜 𝑣) ∈ On)
199198ancoms 469 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑣 ∈ On ∧ 𝐵 ∈ On) → (𝐵 +𝑜 𝑣) ∈ On)
200 omcl 7616 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐴 ∈ On ∧ (𝐵 +𝑜 𝑣) ∈ On) → (𝐴 ·𝑜 (𝐵 +𝑜 𝑣)) ∈ On)
201199, 200sylan2 491 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐴 ∈ On ∧ (𝑣 ∈ On ∧ 𝐵 ∈ On)) → (𝐴 ·𝑜 (𝐵 +𝑜 𝑣)) ∈ On)
202201an12s 843 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑣 ∈ On ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → (𝐴 ·𝑜 (𝐵 +𝑜 𝑣)) ∈ On)
203184, 202sylan 488 . . . . . . . . . . . . . . . . . . . . . . 23 (((Lim 𝑥𝑣𝑥) ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → (𝐴 ·𝑜 (𝐵 +𝑜 𝑣)) ∈ On)
204203an32s 846 . . . . . . . . . . . . . . . . . . . . . 22 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝑣𝑥) → (𝐴 ·𝑜 (𝐵 +𝑜 𝑣)) ∈ On)
205 onelss 5766 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ·𝑜 (𝐵 +𝑜 𝑣)) ∈ On → (((𝐴 ·𝑜 𝐵) +𝑜 𝑤) ∈ (𝐴 ·𝑜 (𝐵 +𝑜 𝑣)) → ((𝐴 ·𝑜 𝐵) +𝑜 𝑤) ⊆ (𝐴 ·𝑜 (𝐵 +𝑜 𝑣))))
206204, 205syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ 𝑣𝑥) → (((𝐴 ·𝑜 𝐵) +𝑜 𝑤) ∈ (𝐴 ·𝑜 (𝐵 +𝑜 𝑣)) → ((𝐴 ·𝑜 𝐵) +𝑜 𝑤) ⊆ (𝐴 ·𝑜 (𝐵 +𝑜 𝑣))))
207206adantlr 751 . . . . . . . . . . . . . . . . . . . 20 ((((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦))) ∧ 𝑣𝑥) → (((𝐴 ·𝑜 𝐵) +𝑜 𝑤) ∈ (𝐴 ·𝑜 (𝐵 +𝑜 𝑣)) → ((𝐴 ·𝑜 𝐵) +𝑜 𝑤) ⊆ (𝐴 ·𝑜 (𝐵 +𝑜 𝑣))))
208197, 207syld 47 . . . . . . . . . . . . . . . . . . 19 ((((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦))) ∧ 𝑣𝑥) → (𝑤 ∈ (𝐴 ·𝑜 𝑣) → ((𝐴 ·𝑜 𝐵) +𝑜 𝑤) ⊆ (𝐴 ·𝑜 (𝐵 +𝑜 𝑣))))
209181, 208jcad 555 . . . . . . . . . . . . . . . . . 18 ((((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦))) ∧ 𝑣𝑥) → (𝑤 ∈ (𝐴 ·𝑜 𝑣) → ((𝐵 +𝑜 𝑣) ∈ (𝐵 +𝑜 𝑥) ∧ ((𝐴 ·𝑜 𝐵) +𝑜 𝑤) ⊆ (𝐴 ·𝑜 (𝐵 +𝑜 𝑣)))))
210 oveq2 6658 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = (𝐵 +𝑜 𝑣) → (𝐴 ·𝑜 𝑧) = (𝐴 ·𝑜 (𝐵 +𝑜 𝑣)))
211210sseq2d 3633 . . . . . . . . . . . . . . . . . . 19 (𝑧 = (𝐵 +𝑜 𝑣) → (((𝐴 ·𝑜 𝐵) +𝑜 𝑤) ⊆ (𝐴 ·𝑜 𝑧) ↔ ((𝐴 ·𝑜 𝐵) +𝑜 𝑤) ⊆ (𝐴 ·𝑜 (𝐵 +𝑜 𝑣))))
212211rspcev 3309 . . . . . . . . . . . . . . . . . 18 (((𝐵 +𝑜 𝑣) ∈ (𝐵 +𝑜 𝑥) ∧ ((𝐴 ·𝑜 𝐵) +𝑜 𝑤) ⊆ (𝐴 ·𝑜 (𝐵 +𝑜 𝑣))) → ∃𝑧 ∈ (𝐵 +𝑜 𝑥)((𝐴 ·𝑜 𝐵) +𝑜 𝑤) ⊆ (𝐴 ·𝑜 𝑧))
213209, 212syl6 35 . . . . . . . . . . . . . . . . 17 ((((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦))) ∧ 𝑣𝑥) → (𝑤 ∈ (𝐴 ·𝑜 𝑣) → ∃𝑧 ∈ (𝐵 +𝑜 𝑥)((𝐴 ·𝑜 𝐵) +𝑜 𝑤) ⊆ (𝐴 ·𝑜 𝑧)))
214213rexlimdva 3031 . . . . . . . . . . . . . . . 16 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦))) → (∃𝑣𝑥 𝑤 ∈ (𝐴 ·𝑜 𝑣) → ∃𝑧 ∈ (𝐵 +𝑜 𝑥)((𝐴 ·𝑜 𝐵) +𝑜 𝑤) ⊆ (𝐴 ·𝑜 𝑧)))
215214adantr 481 . . . . . . . . . . . . . . 15 ((((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦))) ∧ 𝑤 ∈ (𝐴 ·𝑜 𝑥)) → (∃𝑣𝑥 𝑤 ∈ (𝐴 ·𝑜 𝑣) → ∃𝑧 ∈ (𝐵 +𝑜 𝑥)((𝐴 ·𝑜 𝐵) +𝑜 𝑤) ⊆ (𝐴 ·𝑜 𝑧)))
216175, 215mpd 15 . . . . . . . . . . . . . 14 ((((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦))) ∧ 𝑤 ∈ (𝐴 ·𝑜 𝑥)) → ∃𝑧 ∈ (𝐵 +𝑜 𝑥)((𝐴 ·𝑜 𝐵) +𝑜 𝑤) ⊆ (𝐴 ·𝑜 𝑧))
217216ralrimiva 2966 . . . . . . . . . . . . 13 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦))) → ∀𝑤 ∈ (𝐴 ·𝑜 𝑥)∃𝑧 ∈ (𝐵 +𝑜 𝑥)((𝐴 ·𝑜 𝐵) +𝑜 𝑤) ⊆ (𝐴 ·𝑜 𝑧))
218 iunss2 4565 . . . . . . . . . . . . 13 (∀𝑤 ∈ (𝐴 ·𝑜 𝑥)∃𝑧 ∈ (𝐵 +𝑜 𝑥)((𝐴 ·𝑜 𝐵) +𝑜 𝑤) ⊆ (𝐴 ·𝑜 𝑧) → 𝑤 ∈ (𝐴 ·𝑜 𝑥)((𝐴 ·𝑜 𝐵) +𝑜 𝑤) ⊆ 𝑧 ∈ (𝐵 +𝑜 𝑥)(𝐴 ·𝑜 𝑧))
219217, 218syl 17 . . . . . . . . . . . 12 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∀𝑦𝑥 (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦))) → 𝑤 ∈ (𝐴 ·𝑜 𝑥)((𝐴 ·𝑜 𝐵) +𝑜 𝑤) ⊆ 𝑧 ∈ (𝐵 +𝑜 𝑥)(𝐴 ·𝑜 𝑧))
220219adantrl 752 . . . . . . . . . . 11 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)))) → 𝑤 ∈ (𝐴 ·𝑜 𝑥)((𝐴 ·𝑜 𝐵) +𝑜 𝑤) ⊆ 𝑧 ∈ (𝐵 +𝑜 𝑥)(𝐴 ·𝑜 𝑧))
221168, 220eqssd 3620 . . . . . . . . . 10 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)))) → 𝑧 ∈ (𝐵 +𝑜 𝑥)(𝐴 ·𝑜 𝑧) = 𝑤 ∈ (𝐴 ·𝑜 𝑥)((𝐴 ·𝑜 𝐵) +𝑜 𝑤))
222 oalimcl 7640 . . . . . . . . . . . . . . . 16 ((𝐵 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) → Lim (𝐵 +𝑜 𝑥))
22359, 222mpanr1 719 . . . . . . . . . . . . . . 15 ((𝐵 ∈ On ∧ Lim 𝑥) → Lim (𝐵 +𝑜 𝑥))
224223ancoms 469 . . . . . . . . . . . . . 14 ((Lim 𝑥𝐵 ∈ On) → Lim (𝐵 +𝑜 𝑥))
225224anim2i 593 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ (Lim 𝑥𝐵 ∈ On)) → (𝐴 ∈ On ∧ Lim (𝐵 +𝑜 𝑥)))
226225an12s 843 . . . . . . . . . . . 12 ((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → (𝐴 ∈ On ∧ Lim (𝐵 +𝑜 𝑥)))
227 ovex 6678 . . . . . . . . . . . . 13 (𝐵 +𝑜 𝑥) ∈ V
228 omlim 7613 . . . . . . . . . . . . 13 ((𝐴 ∈ On ∧ ((𝐵 +𝑜 𝑥) ∈ V ∧ Lim (𝐵 +𝑜 𝑥))) → (𝐴 ·𝑜 (𝐵 +𝑜 𝑥)) = 𝑧 ∈ (𝐵 +𝑜 𝑥)(𝐴 ·𝑜 𝑧))
229227, 228mpanr1 719 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ Lim (𝐵 +𝑜 𝑥)) → (𝐴 ·𝑜 (𝐵 +𝑜 𝑥)) = 𝑧 ∈ (𝐵 +𝑜 𝑥)(𝐴 ·𝑜 𝑧))
230226, 229syl 17 . . . . . . . . . . 11 ((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) → (𝐴 ·𝑜 (𝐵 +𝑜 𝑥)) = 𝑧 ∈ (𝐵 +𝑜 𝑥)(𝐴 ·𝑜 𝑧))
231230adantr 481 . . . . . . . . . 10 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)))) → (𝐴 ·𝑜 (𝐵 +𝑜 𝑥)) = 𝑧 ∈ (𝐵 +𝑜 𝑥)(𝐴 ·𝑜 𝑧))
23221ad2antlr 763 . . . . . . . . . . . 12 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∅ ∈ 𝐴) → (𝐴 ·𝑜 𝐵) ∈ On)
23359jctl 564 . . . . . . . . . . . . . . . . 17 (Lim 𝑥 → (𝑥 ∈ V ∧ Lim 𝑥))
234233anim2i 593 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ On ∧ Lim 𝑥) → (𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)))
235234ancoms 469 . . . . . . . . . . . . . . 15 ((Lim 𝑥𝐴 ∈ On) → (𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)))
236 omlimcl 7658 . . . . . . . . . . . . . . 15 (((𝐴 ∈ On ∧ (𝑥 ∈ V ∧ Lim 𝑥)) ∧ ∅ ∈ 𝐴) → Lim (𝐴 ·𝑜 𝑥))
237235, 236sylan 488 . . . . . . . . . . . . . 14 (((Lim 𝑥𝐴 ∈ On) ∧ ∅ ∈ 𝐴) → Lim (𝐴 ·𝑜 𝑥))
238237adantlrr 757 . . . . . . . . . . . . 13 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∅ ∈ 𝐴) → Lim (𝐴 ·𝑜 𝑥))
239 ovex 6678 . . . . . . . . . . . . 13 (𝐴 ·𝑜 𝑥) ∈ V
240238, 239jctil 560 . . . . . . . . . . . 12 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∅ ∈ 𝐴) → ((𝐴 ·𝑜 𝑥) ∈ V ∧ Lim (𝐴 ·𝑜 𝑥)))
241 oalim 7612 . . . . . . . . . . . 12 (((𝐴 ·𝑜 𝐵) ∈ On ∧ ((𝐴 ·𝑜 𝑥) ∈ V ∧ Lim (𝐴 ·𝑜 𝑥))) → ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑥)) = 𝑤 ∈ (𝐴 ·𝑜 𝑥)((𝐴 ·𝑜 𝐵) +𝑜 𝑤))
242232, 240, 241syl2anc 693 . . . . . . . . . . 11 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ ∅ ∈ 𝐴) → ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑥)) = 𝑤 ∈ (𝐴 ·𝑜 𝑥)((𝐴 ·𝑜 𝐵) +𝑜 𝑤))
243242adantrr 753 . . . . . . . . . 10 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)))) → ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑥)) = 𝑤 ∈ (𝐴 ·𝑜 𝑥)((𝐴 ·𝑜 𝐵) +𝑜 𝑤))
244221, 231, 2433eqtr4d 2666 . . . . . . . . 9 (((Lim 𝑥 ∧ (𝐴 ∈ On ∧ 𝐵 ∈ On)) ∧ (∅ ∈ 𝐴 ∧ ∀𝑦𝑥 (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)))) → (𝐴 ·𝑜 (𝐵 +𝑜 𝑥)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑥)))
245244exp43 640 . . . . . . . 8 (Lim 𝑥 → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ∈ 𝐴 → (∀𝑦𝑥 (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)) → (𝐴 ·𝑜 (𝐵 +𝑜 𝑥)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑥))))))
246245com3l 89 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ∈ 𝐴 → (Lim 𝑥 → (∀𝑦𝑥 (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)) → (𝐴 ·𝑜 (𝐵 +𝑜 𝑥)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑥))))))
247246imp 445 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ ∅ ∈ 𝐴) → (Lim 𝑥 → (∀𝑦𝑥 (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)) → (𝐴 ·𝑜 (𝐵 +𝑜 𝑥)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑥)))))
24884, 247oe0lem 7593 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (Lim 𝑥 → (∀𝑦𝑥 (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)) → (𝐴 ·𝑜 (𝐵 +𝑜 𝑥)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑥)))))
249248com12 32 . . . 4 (Lim 𝑥 → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∀𝑦𝑥 (𝐴 ·𝑜 (𝐵 +𝑜 𝑦)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑦)) → (𝐴 ·𝑜 (𝐵 +𝑜 𝑥)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝑥)))))
2505, 10, 15, 20, 30, 58, 249tfinds3 7064 . . 3 (𝐶 ∈ On → ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·𝑜 (𝐵 +𝑜 𝐶)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝐶))))
251250expdcom 455 . 2 (𝐴 ∈ On → (𝐵 ∈ On → (𝐶 ∈ On → (𝐴 ·𝑜 (𝐵 +𝑜 𝐶)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝐶)))))
2522513imp 1256 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ·𝑜 (𝐵 +𝑜 𝐶)) = ((𝐴 ·𝑜 𝐵) +𝑜 (𝐴 ·𝑜 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  wrex 2913  Vcvv 3200  wss 3574  c0 3915   ciun 4520  Ord word 5722  Oncon0 5723  Lim wlim 5724  suc csuc 5725  (class class class)co 6650   +𝑜 coa 7557   ·𝑜 comu 7558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-omul 7565
This theorem is referenced by:  omass  7660  oeeui  7682  oaabs2  7725
  Copyright terms: Public domain W3C validator