MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixpconstg Structured version   Visualization version   GIF version

Theorem ixpconstg 7917
Description: Infinite Cartesian product of a constant 𝐵. (Contributed by Mario Carneiro, 11-Jan-2015.)
Assertion
Ref Expression
ixpconstg ((𝐴𝑉𝐵𝑊) → X𝑥𝐴 𝐵 = (𝐵𝑚 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem ixpconstg
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 mapvalg 7867 . . 3 ((𝐵𝑊𝐴𝑉) → (𝐵𝑚 𝐴) = {𝑓𝑓:𝐴𝐵})
2 vex 3203 . . . . 5 𝑓 ∈ V
32elixpconst 7916 . . . 4 (𝑓X𝑥𝐴 𝐵𝑓:𝐴𝐵)
43abbi2i 2738 . . 3 X𝑥𝐴 𝐵 = {𝑓𝑓:𝐴𝐵}
51, 4syl6reqr 2675 . 2 ((𝐵𝑊𝐴𝑉) → X𝑥𝐴 𝐵 = (𝐵𝑚 𝐴))
65ancoms 469 1 ((𝐴𝑉𝐵𝑊) → X𝑥𝐴 𝐵 = (𝐵𝑚 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wcel 1990  {cab 2608  wf 5884  (class class class)co 6650  𝑚 cmap 7857  Xcixp 7908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-ixp 7909
This theorem is referenced by:  ixpconst  7918  mapsnf1o  7949  prdshom  16127  pwsbas  16147  frlmip  20117  pttoponconst  21400  xkoptsub  21457  xkopt  21458  tmdgsum2  21900  rrxip  23178  ovnlecvr2  40824
  Copyright terms: Public domain W3C validator