MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xkoptsub Structured version   Visualization version   GIF version

Theorem xkoptsub 21457
Description: The compact-open topology is finer than the product topology restricted to continuous functions. (Contributed by Mario Carneiro, 19-Mar-2015.)
Hypotheses
Ref Expression
xkoptsub.x 𝑋 = 𝑅
xkoptsub.j 𝐽 = (∏t‘(𝑋 × {𝑆}))
Assertion
Ref Expression
xkoptsub ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝐽t (𝑅 Cn 𝑆)) ⊆ (𝑆 ^ko 𝑅))

Proof of Theorem xkoptsub
Dummy variables 𝑓 𝑔 𝑘 𝑛 𝑢 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xkoptsub.j . . . . 5 𝐽 = (∏t‘(𝑋 × {𝑆}))
2 xkoptsub.x . . . . . . . . 9 𝑋 = 𝑅
32topopn 20711 . . . . . . . 8 (𝑅 ∈ Top → 𝑋𝑅)
43adantr 481 . . . . . . 7 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → 𝑋𝑅)
5 fconstg 6092 . . . . . . . . 9 (𝑆 ∈ Top → (𝑋 × {𝑆}):𝑋⟶{𝑆})
65adantl 482 . . . . . . . 8 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑋 × {𝑆}):𝑋⟶{𝑆})
7 ffn 6045 . . . . . . . 8 ((𝑋 × {𝑆}):𝑋⟶{𝑆} → (𝑋 × {𝑆}) Fn 𝑋)
86, 7syl 17 . . . . . . 7 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑋 × {𝑆}) Fn 𝑋)
9 eqid 2622 . . . . . . . 8 {𝑥 ∣ ∃𝑔((𝑔 Fn 𝑋 ∧ ∀𝑦𝑋 (𝑔𝑦) ∈ ((𝑋 × {𝑆})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝑋𝑧)(𝑔𝑦) = ((𝑋 × {𝑆})‘𝑦)) ∧ 𝑥 = X𝑦𝑋 (𝑔𝑦))} = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝑋 ∧ ∀𝑦𝑋 (𝑔𝑦) ∈ ((𝑋 × {𝑆})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝑋𝑧)(𝑔𝑦) = ((𝑋 × {𝑆})‘𝑦)) ∧ 𝑥 = X𝑦𝑋 (𝑔𝑦))}
109ptval 21373 . . . . . . 7 ((𝑋𝑅 ∧ (𝑋 × {𝑆}) Fn 𝑋) → (∏t‘(𝑋 × {𝑆})) = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝑋 ∧ ∀𝑦𝑋 (𝑔𝑦) ∈ ((𝑋 × {𝑆})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝑋𝑧)(𝑔𝑦) = ((𝑋 × {𝑆})‘𝑦)) ∧ 𝑥 = X𝑦𝑋 (𝑔𝑦))}))
114, 8, 10syl2anc 693 . . . . . 6 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (∏t‘(𝑋 × {𝑆})) = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝑋 ∧ ∀𝑦𝑋 (𝑔𝑦) ∈ ((𝑋 × {𝑆})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝑋𝑧)(𝑔𝑦) = ((𝑋 × {𝑆})‘𝑦)) ∧ 𝑥 = X𝑦𝑋 (𝑔𝑦))}))
12 simpr 477 . . . . . . . . . . 11 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → 𝑆 ∈ Top)
1312snssd 4340 . . . . . . . . . 10 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → {𝑆} ⊆ Top)
146, 13fssd 6057 . . . . . . . . 9 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑋 × {𝑆}):𝑋⟶Top)
15 eqid 2622 . . . . . . . . . 10 X𝑛𝑋 ((𝑋 × {𝑆})‘𝑛) = X𝑛𝑋 ((𝑋 × {𝑆})‘𝑛)
169, 15ptbasfi 21384 . . . . . . . . 9 ((𝑋𝑅 ∧ (𝑋 × {𝑆}):𝑋⟶Top) → {𝑥 ∣ ∃𝑔((𝑔 Fn 𝑋 ∧ ∀𝑦𝑋 (𝑔𝑦) ∈ ((𝑋 × {𝑆})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝑋𝑧)(𝑔𝑦) = ((𝑋 × {𝑆})‘𝑦)) ∧ 𝑥 = X𝑦𝑋 (𝑔𝑦))} = (fi‘({X𝑛𝑋 ((𝑋 × {𝑆})‘𝑛)} ∪ ran (𝑘𝑋, 𝑢 ∈ ((𝑋 × {𝑆})‘𝑘) ↦ ((𝑤X𝑛𝑋 ((𝑋 × {𝑆})‘𝑛) ↦ (𝑤𝑘)) “ 𝑢)))))
174, 14, 16syl2anc 693 . . . . . . . 8 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → {𝑥 ∣ ∃𝑔((𝑔 Fn 𝑋 ∧ ∀𝑦𝑋 (𝑔𝑦) ∈ ((𝑋 × {𝑆})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝑋𝑧)(𝑔𝑦) = ((𝑋 × {𝑆})‘𝑦)) ∧ 𝑥 = X𝑦𝑋 (𝑔𝑦))} = (fi‘({X𝑛𝑋 ((𝑋 × {𝑆})‘𝑛)} ∪ ran (𝑘𝑋, 𝑢 ∈ ((𝑋 × {𝑆})‘𝑘) ↦ ((𝑤X𝑛𝑋 ((𝑋 × {𝑆})‘𝑛) ↦ (𝑤𝑘)) “ 𝑢)))))
18 fvconst2g 6467 . . . . . . . . . . . . . . 15 ((𝑆 ∈ Top ∧ 𝑛𝑋) → ((𝑋 × {𝑆})‘𝑛) = 𝑆)
1918adantll 750 . . . . . . . . . . . . . 14 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ 𝑛𝑋) → ((𝑋 × {𝑆})‘𝑛) = 𝑆)
2019unieqd 4446 . . . . . . . . . . . . 13 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ 𝑛𝑋) → ((𝑋 × {𝑆})‘𝑛) = 𝑆)
2120ixpeq2dva 7923 . . . . . . . . . . . 12 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → X𝑛𝑋 ((𝑋 × {𝑆})‘𝑛) = X𝑛𝑋 𝑆)
22 eqid 2622 . . . . . . . . . . . . . 14 𝑆 = 𝑆
2322topopn 20711 . . . . . . . . . . . . 13 (𝑆 ∈ Top → 𝑆𝑆)
24 ixpconstg 7917 . . . . . . . . . . . . 13 ((𝑋𝑅 𝑆𝑆) → X𝑛𝑋 𝑆 = ( 𝑆𝑚 𝑋))
253, 23, 24syl2an 494 . . . . . . . . . . . 12 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → X𝑛𝑋 𝑆 = ( 𝑆𝑚 𝑋))
2621, 25eqtrd 2656 . . . . . . . . . . 11 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → X𝑛𝑋 ((𝑋 × {𝑆})‘𝑛) = ( 𝑆𝑚 𝑋))
2726sneqd 4189 . . . . . . . . . 10 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → {X𝑛𝑋 ((𝑋 × {𝑆})‘𝑛)} = {( 𝑆𝑚 𝑋)})
28 eqid 2622 . . . . . . . . . . . 12 𝑋 = 𝑋
29 fvconst2g 6467 . . . . . . . . . . . . . . 15 ((𝑆 ∈ Top ∧ 𝑘𝑋) → ((𝑋 × {𝑆})‘𝑘) = 𝑆)
3029adantll 750 . . . . . . . . . . . . . 14 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ 𝑘𝑋) → ((𝑋 × {𝑆})‘𝑘) = 𝑆)
3126adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ 𝑘𝑋) → X𝑛𝑋 ((𝑋 × {𝑆})‘𝑛) = ( 𝑆𝑚 𝑋))
3231mpteq1d 4738 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ 𝑘𝑋) → (𝑤X𝑛𝑋 ((𝑋 × {𝑆})‘𝑛) ↦ (𝑤𝑘)) = (𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)))
3332cnveqd 5298 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ 𝑘𝑋) → (𝑤X𝑛𝑋 ((𝑋 × {𝑆})‘𝑛) ↦ (𝑤𝑘)) = (𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)))
3433imaeq1d 5465 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ 𝑘𝑋) → ((𝑤X𝑛𝑋 ((𝑋 × {𝑆})‘𝑛) ↦ (𝑤𝑘)) “ 𝑢) = ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))
3534ralrimivw 2967 . . . . . . . . . . . . . 14 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ 𝑘𝑋) → ∀𝑢 ∈ ((𝑋 × {𝑆})‘𝑘)((𝑤X𝑛𝑋 ((𝑋 × {𝑆})‘𝑛) ↦ (𝑤𝑘)) “ 𝑢) = ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))
3630, 35jca 554 . . . . . . . . . . . . 13 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ 𝑘𝑋) → (((𝑋 × {𝑆})‘𝑘) = 𝑆 ∧ ∀𝑢 ∈ ((𝑋 × {𝑆})‘𝑘)((𝑤X𝑛𝑋 ((𝑋 × {𝑆})‘𝑛) ↦ (𝑤𝑘)) “ 𝑢) = ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢)))
3736ralrimiva 2966 . . . . . . . . . . . 12 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → ∀𝑘𝑋 (((𝑋 × {𝑆})‘𝑘) = 𝑆 ∧ ∀𝑢 ∈ ((𝑋 × {𝑆})‘𝑘)((𝑤X𝑛𝑋 ((𝑋 × {𝑆})‘𝑛) ↦ (𝑤𝑘)) “ 𝑢) = ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢)))
38 mpt2eq123 6714 . . . . . . . . . . . 12 ((𝑋 = 𝑋 ∧ ∀𝑘𝑋 (((𝑋 × {𝑆})‘𝑘) = 𝑆 ∧ ∀𝑢 ∈ ((𝑋 × {𝑆})‘𝑘)((𝑤X𝑛𝑋 ((𝑋 × {𝑆})‘𝑛) ↦ (𝑤𝑘)) “ 𝑢) = ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))) → (𝑘𝑋, 𝑢 ∈ ((𝑋 × {𝑆})‘𝑘) ↦ ((𝑤X𝑛𝑋 ((𝑋 × {𝑆})‘𝑛) ↦ (𝑤𝑘)) “ 𝑢)) = (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢)))
3928, 37, 38sylancr 695 . . . . . . . . . . 11 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑘𝑋, 𝑢 ∈ ((𝑋 × {𝑆})‘𝑘) ↦ ((𝑤X𝑛𝑋 ((𝑋 × {𝑆})‘𝑛) ↦ (𝑤𝑘)) “ 𝑢)) = (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢)))
4039rneqd 5353 . . . . . . . . . 10 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → ran (𝑘𝑋, 𝑢 ∈ ((𝑋 × {𝑆})‘𝑘) ↦ ((𝑤X𝑛𝑋 ((𝑋 × {𝑆})‘𝑛) ↦ (𝑤𝑘)) “ 𝑢)) = ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢)))
4127, 40uneq12d 3768 . . . . . . . . 9 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → ({X𝑛𝑋 ((𝑋 × {𝑆})‘𝑛)} ∪ ran (𝑘𝑋, 𝑢 ∈ ((𝑋 × {𝑆})‘𝑘) ↦ ((𝑤X𝑛𝑋 ((𝑋 × {𝑆})‘𝑛) ↦ (𝑤𝑘)) “ 𝑢))) = ({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))))
4241fveq2d 6195 . . . . . . . 8 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (fi‘({X𝑛𝑋 ((𝑋 × {𝑆})‘𝑛)} ∪ ran (𝑘𝑋, 𝑢 ∈ ((𝑋 × {𝑆})‘𝑘) ↦ ((𝑤X𝑛𝑋 ((𝑋 × {𝑆})‘𝑛) ↦ (𝑤𝑘)) “ 𝑢)))) = (fi‘({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢)))))
4317, 42eqtrd 2656 . . . . . . 7 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → {𝑥 ∣ ∃𝑔((𝑔 Fn 𝑋 ∧ ∀𝑦𝑋 (𝑔𝑦) ∈ ((𝑋 × {𝑆})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝑋𝑧)(𝑔𝑦) = ((𝑋 × {𝑆})‘𝑦)) ∧ 𝑥 = X𝑦𝑋 (𝑔𝑦))} = (fi‘({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢)))))
4443fveq2d 6195 . . . . . 6 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝑋 ∧ ∀𝑦𝑋 (𝑔𝑦) ∈ ((𝑋 × {𝑆})‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝑋𝑧)(𝑔𝑦) = ((𝑋 × {𝑆})‘𝑦)) ∧ 𝑥 = X𝑦𝑋 (𝑔𝑦))}) = (topGen‘(fi‘({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))))))
4511, 44eqtrd 2656 . . . . 5 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (∏t‘(𝑋 × {𝑆})) = (topGen‘(fi‘({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))))))
461, 45syl5eq 2668 . . . 4 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → 𝐽 = (topGen‘(fi‘({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))))))
4746oveq1d 6665 . . 3 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝐽t (𝑅 Cn 𝑆)) = ((topGen‘(fi‘({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))))) ↾t (𝑅 Cn 𝑆)))
48 firest 16093 . . . . 5 (fi‘(({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))) ↾t (𝑅 Cn 𝑆))) = ((fi‘({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢)))) ↾t (𝑅 Cn 𝑆))
4948fveq2i 6194 . . . 4 (topGen‘(fi‘(({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))) ↾t (𝑅 Cn 𝑆)))) = (topGen‘((fi‘({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢)))) ↾t (𝑅 Cn 𝑆)))
50 fvex 6201 . . . . 5 (fi‘({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢)))) ∈ V
51 ovex 6678 . . . . 5 (𝑅 Cn 𝑆) ∈ V
52 tgrest 20963 . . . . 5 (((fi‘({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢)))) ∈ V ∧ (𝑅 Cn 𝑆) ∈ V) → (topGen‘((fi‘({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢)))) ↾t (𝑅 Cn 𝑆))) = ((topGen‘(fi‘({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))))) ↾t (𝑅 Cn 𝑆)))
5350, 51, 52mp2an 708 . . . 4 (topGen‘((fi‘({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢)))) ↾t (𝑅 Cn 𝑆))) = ((topGen‘(fi‘({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))))) ↾t (𝑅 Cn 𝑆))
5449, 53eqtri 2644 . . 3 (topGen‘(fi‘(({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))) ↾t (𝑅 Cn 𝑆)))) = ((topGen‘(fi‘({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))))) ↾t (𝑅 Cn 𝑆))
5547, 54syl6eqr 2674 . 2 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝐽t (𝑅 Cn 𝑆)) = (topGen‘(fi‘(({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))) ↾t (𝑅 Cn 𝑆)))))
56 xkotop 21391 . . 3 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆 ^ko 𝑅) ∈ Top)
57 snex 4908 . . . . . 6 {( 𝑆𝑚 𝑋)} ∈ V
58 mpt2exga 7246 . . . . . . . 8 ((𝑋𝑅𝑆 ∈ Top) → (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢)) ∈ V)
593, 58sylan 488 . . . . . . 7 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢)) ∈ V)
60 rnexg 7098 . . . . . . 7 ((𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢)) ∈ V → ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢)) ∈ V)
6159, 60syl 17 . . . . . 6 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢)) ∈ V)
62 unexg 6959 . . . . . 6 (({( 𝑆𝑚 𝑋)} ∈ V ∧ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢)) ∈ V) → ({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))) ∈ V)
6357, 61, 62sylancr 695 . . . . 5 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → ({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))) ∈ V)
64 restval 16087 . . . . 5 ((({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))) ∈ V ∧ (𝑅 Cn 𝑆) ∈ V) → (({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))) ↾t (𝑅 Cn 𝑆)) = ran (𝑥 ∈ ({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))) ↦ (𝑥 ∩ (𝑅 Cn 𝑆))))
6563, 51, 64sylancl 694 . . . 4 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))) ↾t (𝑅 Cn 𝑆)) = ran (𝑥 ∈ ({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))) ↦ (𝑥 ∩ (𝑅 Cn 𝑆))))
66 elun 3753 . . . . . . 7 (𝑥 ∈ ({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))) ↔ (𝑥 ∈ {( 𝑆𝑚 𝑋)} ∨ 𝑥 ∈ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))))
672, 22cnf 21050 . . . . . . . . . . . . . 14 (𝑥 ∈ (𝑅 Cn 𝑆) → 𝑥:𝑋 𝑆)
68 elmapg 7870 . . . . . . . . . . . . . . 15 (( 𝑆𝑆𝑋𝑅) → (𝑥 ∈ ( 𝑆𝑚 𝑋) ↔ 𝑥:𝑋 𝑆))
6923, 3, 68syl2anr 495 . . . . . . . . . . . . . 14 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑥 ∈ ( 𝑆𝑚 𝑋) ↔ 𝑥:𝑋 𝑆))
7067, 69syl5ibr 236 . . . . . . . . . . . . 13 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑥 ∈ (𝑅 Cn 𝑆) → 𝑥 ∈ ( 𝑆𝑚 𝑋)))
7170ssrdv 3609 . . . . . . . . . . . 12 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 Cn 𝑆) ⊆ ( 𝑆𝑚 𝑋))
7271adantr 481 . . . . . . . . . . 11 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ 𝑥 ∈ {( 𝑆𝑚 𝑋)}) → (𝑅 Cn 𝑆) ⊆ ( 𝑆𝑚 𝑋))
73 elsni 4194 . . . . . . . . . . . 12 (𝑥 ∈ {( 𝑆𝑚 𝑋)} → 𝑥 = ( 𝑆𝑚 𝑋))
7473adantl 482 . . . . . . . . . . 11 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ 𝑥 ∈ {( 𝑆𝑚 𝑋)}) → 𝑥 = ( 𝑆𝑚 𝑋))
7572, 74sseqtr4d 3642 . . . . . . . . . 10 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ 𝑥 ∈ {( 𝑆𝑚 𝑋)}) → (𝑅 Cn 𝑆) ⊆ 𝑥)
76 sseqin2 3817 . . . . . . . . . 10 ((𝑅 Cn 𝑆) ⊆ 𝑥 ↔ (𝑥 ∩ (𝑅 Cn 𝑆)) = (𝑅 Cn 𝑆))
7775, 76sylib 208 . . . . . . . . 9 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ 𝑥 ∈ {( 𝑆𝑚 𝑋)}) → (𝑥 ∩ (𝑅 Cn 𝑆)) = (𝑅 Cn 𝑆))
78 eqid 2622 . . . . . . . . . . . 12 (𝑆 ^ko 𝑅) = (𝑆 ^ko 𝑅)
7978xkouni 21402 . . . . . . . . . . 11 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 Cn 𝑆) = (𝑆 ^ko 𝑅))
80 eqid 2622 . . . . . . . . . . . . 13 (𝑆 ^ko 𝑅) = (𝑆 ^ko 𝑅)
8180topopn 20711 . . . . . . . . . . . 12 ((𝑆 ^ko 𝑅) ∈ Top → (𝑆 ^ko 𝑅) ∈ (𝑆 ^ko 𝑅))
8256, 81syl 17 . . . . . . . . . . 11 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑆 ^ko 𝑅) ∈ (𝑆 ^ko 𝑅))
8379, 82eqeltrd 2701 . . . . . . . . . 10 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑅 Cn 𝑆) ∈ (𝑆 ^ko 𝑅))
8483adantr 481 . . . . . . . . 9 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ 𝑥 ∈ {( 𝑆𝑚 𝑋)}) → (𝑅 Cn 𝑆) ∈ (𝑆 ^ko 𝑅))
8577, 84eqeltrd 2701 . . . . . . . 8 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ 𝑥 ∈ {( 𝑆𝑚 𝑋)}) → (𝑥 ∩ (𝑅 Cn 𝑆)) ∈ (𝑆 ^ko 𝑅))
86 eqid 2622 . . . . . . . . . . 11 (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢)) = (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))
8786rnmpt2 6770 . . . . . . . . . 10 ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢)) = {𝑥 ∣ ∃𝑘𝑋𝑢𝑆 𝑥 = ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢)}
8887abeq2i 2735 . . . . . . . . 9 (𝑥 ∈ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢)) ↔ ∃𝑘𝑋𝑢𝑆 𝑥 = ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))
89 cnvresima 5623 . . . . . . . . . . . . . . 15 (((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) ↾ (𝑅 Cn 𝑆)) “ 𝑢) = (((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢) ∩ (𝑅 Cn 𝑆))
9071adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) → (𝑅 Cn 𝑆) ⊆ ( 𝑆𝑚 𝑋))
9190resmptd 5452 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) → ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) ↾ (𝑅 Cn 𝑆)) = (𝑤 ∈ (𝑅 Cn 𝑆) ↦ (𝑤𝑘)))
9291cnveqd 5298 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) → ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) ↾ (𝑅 Cn 𝑆)) = (𝑤 ∈ (𝑅 Cn 𝑆) ↦ (𝑤𝑘)))
9392imaeq1d 5465 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) → (((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) ↾ (𝑅 Cn 𝑆)) “ 𝑢) = ((𝑤 ∈ (𝑅 Cn 𝑆) ↦ (𝑤𝑘)) “ 𝑢))
9489, 93syl5eqr 2670 . . . . . . . . . . . . . 14 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) → (((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢) ∩ (𝑅 Cn 𝑆)) = ((𝑤 ∈ (𝑅 Cn 𝑆) ↦ (𝑤𝑘)) “ 𝑢))
95 fvex 6201 . . . . . . . . . . . . . . . . . . . 20 (𝑤𝑘) ∈ V
9695rgenw 2924 . . . . . . . . . . . . . . . . . . 19 𝑤 ∈ (𝑅 Cn 𝑆)(𝑤𝑘) ∈ V
97 eqid 2622 . . . . . . . . . . . . . . . . . . . 20 (𝑤 ∈ (𝑅 Cn 𝑆) ↦ (𝑤𝑘)) = (𝑤 ∈ (𝑅 Cn 𝑆) ↦ (𝑤𝑘))
9897fnmpt 6020 . . . . . . . . . . . . . . . . . . 19 (∀𝑤 ∈ (𝑅 Cn 𝑆)(𝑤𝑘) ∈ V → (𝑤 ∈ (𝑅 Cn 𝑆) ↦ (𝑤𝑘)) Fn (𝑅 Cn 𝑆))
9996, 98mp1i 13 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) → (𝑤 ∈ (𝑅 Cn 𝑆) ↦ (𝑤𝑘)) Fn (𝑅 Cn 𝑆))
100 elpreima 6337 . . . . . . . . . . . . . . . . . 18 ((𝑤 ∈ (𝑅 Cn 𝑆) ↦ (𝑤𝑘)) Fn (𝑅 Cn 𝑆) → (𝑓 ∈ ((𝑤 ∈ (𝑅 Cn 𝑆) ↦ (𝑤𝑘)) “ 𝑢) ↔ (𝑓 ∈ (𝑅 Cn 𝑆) ∧ ((𝑤 ∈ (𝑅 Cn 𝑆) ↦ (𝑤𝑘))‘𝑓) ∈ 𝑢)))
10199, 100syl 17 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) → (𝑓 ∈ ((𝑤 ∈ (𝑅 Cn 𝑆) ↦ (𝑤𝑘)) “ 𝑢) ↔ (𝑓 ∈ (𝑅 Cn 𝑆) ∧ ((𝑤 ∈ (𝑅 Cn 𝑆) ↦ (𝑤𝑘))‘𝑓) ∈ 𝑢)))
102 fveq1 6190 . . . . . . . . . . . . . . . . . . . . . 22 (𝑤 = 𝑓 → (𝑤𝑘) = (𝑓𝑘))
103 fvex 6201 . . . . . . . . . . . . . . . . . . . . . 22 (𝑓𝑘) ∈ V
104102, 97, 103fvmpt 6282 . . . . . . . . . . . . . . . . . . . . 21 (𝑓 ∈ (𝑅 Cn 𝑆) → ((𝑤 ∈ (𝑅 Cn 𝑆) ↦ (𝑤𝑘))‘𝑓) = (𝑓𝑘))
105104adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) ∧ 𝑓 ∈ (𝑅 Cn 𝑆)) → ((𝑤 ∈ (𝑅 Cn 𝑆) ↦ (𝑤𝑘))‘𝑓) = (𝑓𝑘))
106105eleq1d 2686 . . . . . . . . . . . . . . . . . . 19 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) ∧ 𝑓 ∈ (𝑅 Cn 𝑆)) → (((𝑤 ∈ (𝑅 Cn 𝑆) ↦ (𝑤𝑘))‘𝑓) ∈ 𝑢 ↔ (𝑓𝑘) ∈ 𝑢))
107103snss 4316 . . . . . . . . . . . . . . . . . . . 20 ((𝑓𝑘) ∈ 𝑢 ↔ {(𝑓𝑘)} ⊆ 𝑢)
10890sselda 3603 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) ∧ 𝑓 ∈ (𝑅 Cn 𝑆)) → 𝑓 ∈ ( 𝑆𝑚 𝑋))
109 elmapi 7879 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓 ∈ ( 𝑆𝑚 𝑋) → 𝑓:𝑋 𝑆)
110 ffn 6045 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑓:𝑋 𝑆𝑓 Fn 𝑋)
111108, 109, 1103syl 18 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) ∧ 𝑓 ∈ (𝑅 Cn 𝑆)) → 𝑓 Fn 𝑋)
112 simplrl 800 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) ∧ 𝑓 ∈ (𝑅 Cn 𝑆)) → 𝑘𝑋)
113 fnsnfv 6258 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑓 Fn 𝑋𝑘𝑋) → {(𝑓𝑘)} = (𝑓 “ {𝑘}))
114111, 112, 113syl2anc 693 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) ∧ 𝑓 ∈ (𝑅 Cn 𝑆)) → {(𝑓𝑘)} = (𝑓 “ {𝑘}))
115114sseq1d 3632 . . . . . . . . . . . . . . . . . . . 20 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) ∧ 𝑓 ∈ (𝑅 Cn 𝑆)) → ({(𝑓𝑘)} ⊆ 𝑢 ↔ (𝑓 “ {𝑘}) ⊆ 𝑢))
116107, 115syl5bb 272 . . . . . . . . . . . . . . . . . . 19 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) ∧ 𝑓 ∈ (𝑅 Cn 𝑆)) → ((𝑓𝑘) ∈ 𝑢 ↔ (𝑓 “ {𝑘}) ⊆ 𝑢))
117106, 116bitrd 268 . . . . . . . . . . . . . . . . . 18 ((((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) ∧ 𝑓 ∈ (𝑅 Cn 𝑆)) → (((𝑤 ∈ (𝑅 Cn 𝑆) ↦ (𝑤𝑘))‘𝑓) ∈ 𝑢 ↔ (𝑓 “ {𝑘}) ⊆ 𝑢))
118117pm5.32da 673 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) → ((𝑓 ∈ (𝑅 Cn 𝑆) ∧ ((𝑤 ∈ (𝑅 Cn 𝑆) ↦ (𝑤𝑘))‘𝑓) ∈ 𝑢) ↔ (𝑓 ∈ (𝑅 Cn 𝑆) ∧ (𝑓 “ {𝑘}) ⊆ 𝑢)))
119101, 118bitrd 268 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) → (𝑓 ∈ ((𝑤 ∈ (𝑅 Cn 𝑆) ↦ (𝑤𝑘)) “ 𝑢) ↔ (𝑓 ∈ (𝑅 Cn 𝑆) ∧ (𝑓 “ {𝑘}) ⊆ 𝑢)))
120119abbi2dv 2742 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) → ((𝑤 ∈ (𝑅 Cn 𝑆) ↦ (𝑤𝑘)) “ 𝑢) = {𝑓 ∣ (𝑓 ∈ (𝑅 Cn 𝑆) ∧ (𝑓 “ {𝑘}) ⊆ 𝑢)})
121 df-rab 2921 . . . . . . . . . . . . . . 15 {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ {𝑘}) ⊆ 𝑢} = {𝑓 ∣ (𝑓 ∈ (𝑅 Cn 𝑆) ∧ (𝑓 “ {𝑘}) ⊆ 𝑢)}
122120, 121syl6eqr 2674 . . . . . . . . . . . . . 14 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) → ((𝑤 ∈ (𝑅 Cn 𝑆) ↦ (𝑤𝑘)) “ 𝑢) = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ {𝑘}) ⊆ 𝑢})
12394, 122eqtrd 2656 . . . . . . . . . . . . 13 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) → (((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢) ∩ (𝑅 Cn 𝑆)) = {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ {𝑘}) ⊆ 𝑢})
124 simpll 790 . . . . . . . . . . . . . 14 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) → 𝑅 ∈ Top)
12512adantr 481 . . . . . . . . . . . . . 14 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) → 𝑆 ∈ Top)
126 simprl 794 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) → 𝑘𝑋)
127126snssd 4340 . . . . . . . . . . . . . 14 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) → {𝑘} ⊆ 𝑋)
1282toptopon 20722 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ Top ↔ 𝑅 ∈ (TopOn‘𝑋))
129124, 128sylib 208 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) → 𝑅 ∈ (TopOn‘𝑋))
130 restsn2 20975 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ (TopOn‘𝑋) ∧ 𝑘𝑋) → (𝑅t {𝑘}) = 𝒫 {𝑘})
131129, 126, 130syl2anc 693 . . . . . . . . . . . . . . 15 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) → (𝑅t {𝑘}) = 𝒫 {𝑘})
132 snfi 8038 . . . . . . . . . . . . . . . 16 {𝑘} ∈ Fin
133 discmp 21201 . . . . . . . . . . . . . . . 16 ({𝑘} ∈ Fin ↔ 𝒫 {𝑘} ∈ Comp)
134132, 133mpbi 220 . . . . . . . . . . . . . . 15 𝒫 {𝑘} ∈ Comp
135131, 134syl6eqel 2709 . . . . . . . . . . . . . 14 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) → (𝑅t {𝑘}) ∈ Comp)
136 simprr 796 . . . . . . . . . . . . . 14 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) → 𝑢𝑆)
1372, 124, 125, 127, 135, 136xkoopn 21392 . . . . . . . . . . . . 13 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) → {𝑓 ∈ (𝑅 Cn 𝑆) ∣ (𝑓 “ {𝑘}) ⊆ 𝑢} ∈ (𝑆 ^ko 𝑅))
138123, 137eqeltrd 2701 . . . . . . . . . . . 12 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) → (((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢) ∩ (𝑅 Cn 𝑆)) ∈ (𝑆 ^ko 𝑅))
139 ineq1 3807 . . . . . . . . . . . . 13 (𝑥 = ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢) → (𝑥 ∩ (𝑅 Cn 𝑆)) = (((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢) ∩ (𝑅 Cn 𝑆)))
140139eleq1d 2686 . . . . . . . . . . . 12 (𝑥 = ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢) → ((𝑥 ∩ (𝑅 Cn 𝑆)) ∈ (𝑆 ^ko 𝑅) ↔ (((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢) ∩ (𝑅 Cn 𝑆)) ∈ (𝑆 ^ko 𝑅)))
141138, 140syl5ibrcom 237 . . . . . . . . . . 11 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑘𝑋𝑢𝑆)) → (𝑥 = ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢) → (𝑥 ∩ (𝑅 Cn 𝑆)) ∈ (𝑆 ^ko 𝑅)))
142141rexlimdvva 3038 . . . . . . . . . 10 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (∃𝑘𝑋𝑢𝑆 𝑥 = ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢) → (𝑥 ∩ (𝑅 Cn 𝑆)) ∈ (𝑆 ^ko 𝑅)))
143142imp 445 . . . . . . . . 9 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ ∃𝑘𝑋𝑢𝑆 𝑥 = ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢)) → (𝑥 ∩ (𝑅 Cn 𝑆)) ∈ (𝑆 ^ko 𝑅))
14488, 143sylan2b 492 . . . . . . . 8 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ 𝑥 ∈ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))) → (𝑥 ∩ (𝑅 Cn 𝑆)) ∈ (𝑆 ^ko 𝑅))
14585, 144jaodan 826 . . . . . . 7 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ (𝑥 ∈ {( 𝑆𝑚 𝑋)} ∨ 𝑥 ∈ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢)))) → (𝑥 ∩ (𝑅 Cn 𝑆)) ∈ (𝑆 ^ko 𝑅))
14666, 145sylan2b 492 . . . . . 6 (((𝑅 ∈ Top ∧ 𝑆 ∈ Top) ∧ 𝑥 ∈ ({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢)))) → (𝑥 ∩ (𝑅 Cn 𝑆)) ∈ (𝑆 ^ko 𝑅))
147 eqid 2622 . . . . . 6 (𝑥 ∈ ({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))) ↦ (𝑥 ∩ (𝑅 Cn 𝑆))) = (𝑥 ∈ ({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))) ↦ (𝑥 ∩ (𝑅 Cn 𝑆)))
148146, 147fmptd 6385 . . . . 5 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝑥 ∈ ({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))) ↦ (𝑥 ∩ (𝑅 Cn 𝑆))):({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢)))⟶(𝑆 ^ko 𝑅))
149 frn 6053 . . . . 5 ((𝑥 ∈ ({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))) ↦ (𝑥 ∩ (𝑅 Cn 𝑆))):({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢)))⟶(𝑆 ^ko 𝑅) → ran (𝑥 ∈ ({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))) ↦ (𝑥 ∩ (𝑅 Cn 𝑆))) ⊆ (𝑆 ^ko 𝑅))
150148, 149syl 17 . . . 4 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → ran (𝑥 ∈ ({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))) ↦ (𝑥 ∩ (𝑅 Cn 𝑆))) ⊆ (𝑆 ^ko 𝑅))
15165, 150eqsstrd 3639 . . 3 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))) ↾t (𝑅 Cn 𝑆)) ⊆ (𝑆 ^ko 𝑅))
152 tgfiss 20795 . . 3 (((𝑆 ^ko 𝑅) ∈ Top ∧ (({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))) ↾t (𝑅 Cn 𝑆)) ⊆ (𝑆 ^ko 𝑅)) → (topGen‘(fi‘(({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))) ↾t (𝑅 Cn 𝑆)))) ⊆ (𝑆 ^ko 𝑅))
15356, 151, 152syl2anc 693 . 2 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (topGen‘(fi‘(({( 𝑆𝑚 𝑋)} ∪ ran (𝑘𝑋, 𝑢𝑆 ↦ ((𝑤 ∈ ( 𝑆𝑚 𝑋) ↦ (𝑤𝑘)) “ 𝑢))) ↾t (𝑅 Cn 𝑆)))) ⊆ (𝑆 ^ko 𝑅))
15455, 153eqsstrd 3639 1 ((𝑅 ∈ Top ∧ 𝑆 ∈ Top) → (𝐽t (𝑅 Cn 𝑆)) ⊆ (𝑆 ^ko 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384  w3a 1037   = wceq 1483  wex 1704  wcel 1990  {cab 2608  wral 2912  wrex 2913  {crab 2916  Vcvv 3200  cdif 3571  cun 3572  cin 3573  wss 3574  𝒫 cpw 4158  {csn 4177   cuni 4436  cmpt 4729   × cxp 5112  ccnv 5113  ran crn 5115  cres 5116  cima 5117   Fn wfn 5883  wf 5884  cfv 5888  (class class class)co 6650  cmpt2 6652  𝑚 cmap 7857  Xcixp 7908  Fincfn 7955  ficfi 8316  t crest 16081  topGenctg 16098  tcpt 16099  Topctop 20698  TopOnctopon 20715   Cn ccn 21028  Compccmp 21189   ^ko cxko 21364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-rest 16083  df-topgen 16104  df-pt 16105  df-top 20699  df-topon 20716  df-bases 20750  df-cn 21031  df-cmp 21190  df-xko 21366
This theorem is referenced by:  xkopt  21458  xkopjcn  21459
  Copyright terms: Public domain W3C validator