| Step | Hyp | Ref
| Expression |
| 1 | | fveq2 6191 |
. . . . . 6
⊢ (𝑋 = ∅ →
(voln*‘𝑋) =
(voln*‘∅)) |
| 2 | 1 | fveq1d 6193 |
. . . . 5
⊢ (𝑋 = ∅ →
((voln*‘𝑋)‘𝐴) = ((voln*‘∅)‘𝐴)) |
| 3 | 2 | adantl 482 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 = ∅) → ((voln*‘𝑋)‘𝐴) = ((voln*‘∅)‘𝐴)) |
| 4 | | ovnlecvr2.s |
. . . . . . 7
⊢ (𝜑 → 𝐴 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
| 5 | 4 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 = ∅) → 𝐴 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
| 6 | | 1nn 11031 |
. . . . . . . . . . 11
⊢ 1 ∈
ℕ |
| 7 | | ne0i 3921 |
. . . . . . . . . . 11
⊢ (1 ∈
ℕ → ℕ ≠ ∅) |
| 8 | 6, 7 | ax-mp 5 |
. . . . . . . . . 10
⊢ ℕ
≠ ∅ |
| 9 | 8 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → ℕ ≠
∅) |
| 10 | | iunconst 4529 |
. . . . . . . . 9
⊢ (ℕ
≠ ∅ → ∪ 𝑗 ∈ ℕ {∅} =
{∅}) |
| 11 | 9, 10 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → ∪ 𝑗 ∈ ℕ {∅} =
{∅}) |
| 12 | 11 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 = ∅) → ∪ 𝑗 ∈ ℕ {∅} =
{∅}) |
| 13 | | ixpeq1 7919 |
. . . . . . . . . . 11
⊢ (𝑋 = ∅ → X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) = X𝑘 ∈ ∅ (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
| 14 | | ixp0x 7936 |
. . . . . . . . . . . 12
⊢ X𝑘 ∈
∅ (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) = {∅} |
| 15 | 14 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝑋 = ∅ → X𝑘 ∈
∅ (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) = {∅}) |
| 16 | 13, 15 | eqtrd 2656 |
. . . . . . . . . 10
⊢ (𝑋 = ∅ → X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) = {∅}) |
| 17 | 16 | adantr 481 |
. . . . . . . . 9
⊢ ((𝑋 = ∅ ∧ 𝑗 ∈ ℕ) → X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) = {∅}) |
| 18 | 17 | iuneq2dv 4542 |
. . . . . . . 8
⊢ (𝑋 = ∅ → ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) = ∪
𝑗 ∈ ℕ
{∅}) |
| 19 | 18 | adantl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 = ∅) → ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) = ∪
𝑗 ∈ ℕ
{∅}) |
| 20 | | reex 10027 |
. . . . . . . . 9
⊢ ℝ
∈ V |
| 21 | | mapdm0 7872 |
. . . . . . . . 9
⊢ (ℝ
∈ V → (ℝ ↑𝑚 ∅) =
{∅}) |
| 22 | 20, 21 | ax-mp 5 |
. . . . . . . 8
⊢ (ℝ
↑𝑚 ∅) = {∅} |
| 23 | 22 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 = ∅) → (ℝ
↑𝑚 ∅) = {∅}) |
| 24 | 12, 19, 23 | 3eqtr4d 2666 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 = ∅) → ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) = (ℝ ↑𝑚
∅)) |
| 25 | 5, 24 | sseqtrd 3641 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 = ∅) → 𝐴 ⊆ (ℝ ↑𝑚
∅)) |
| 26 | 25 | ovn0val 40764 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 = ∅) →
((voln*‘∅)‘𝐴) = 0) |
| 27 | 3, 26 | eqtrd 2656 |
. . 3
⊢ ((𝜑 ∧ 𝑋 = ∅) → ((voln*‘𝑋)‘𝐴) = 0) |
| 28 | | nfv 1843 |
. . . . 5
⊢
Ⅎ𝑗𝜑 |
| 29 | | nnex 11026 |
. . . . . 6
⊢ ℕ
∈ V |
| 30 | 29 | a1i 11 |
. . . . 5
⊢ (𝜑 → ℕ ∈
V) |
| 31 | | icossicc 12260 |
. . . . . 6
⊢
(0[,)+∞) ⊆ (0[,]+∞) |
| 32 | | ovnlecvr2.l |
. . . . . . 7
⊢ 𝐿 = (𝑥 ∈ Fin ↦ (𝑎 ∈ (ℝ ↑𝑚
𝑥), 𝑏 ∈ (ℝ ↑𝑚
𝑥) ↦ if(𝑥 = ∅, 0, ∏𝑘 ∈ 𝑥 (vol‘((𝑎‘𝑘)[,)(𝑏‘𝑘)))))) |
| 33 | | ovnlecvr2.x |
. . . . . . . 8
⊢ (𝜑 → 𝑋 ∈ Fin) |
| 34 | 33 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑋 ∈ Fin) |
| 35 | | ovnlecvr2.c |
. . . . . . . . 9
⊢ (𝜑 → 𝐶:ℕ⟶(ℝ
↑𝑚 𝑋)) |
| 36 | 35 | ffvelrnda 6359 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐶‘𝑗) ∈ (ℝ ↑𝑚
𝑋)) |
| 37 | | elmapi 7879 |
. . . . . . . 8
⊢ ((𝐶‘𝑗) ∈ (ℝ ↑𝑚
𝑋) → (𝐶‘𝑗):𝑋⟶ℝ) |
| 38 | 36, 37 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐶‘𝑗):𝑋⟶ℝ) |
| 39 | | ovnlecvr2.d |
. . . . . . . . 9
⊢ (𝜑 → 𝐷:ℕ⟶(ℝ
↑𝑚 𝑋)) |
| 40 | 39 | ffvelrnda 6359 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐷‘𝑗) ∈ (ℝ ↑𝑚
𝑋)) |
| 41 | | elmapi 7879 |
. . . . . . . 8
⊢ ((𝐷‘𝑗) ∈ (ℝ ↑𝑚
𝑋) → (𝐷‘𝑗):𝑋⟶ℝ) |
| 42 | 40, 41 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝐷‘𝑗):𝑋⟶ℝ) |
| 43 | 32, 34, 38, 42 | hoidmvcl 40796 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)) ∈ (0[,)+∞)) |
| 44 | 31, 43 | sseldi 3601 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)) ∈ (0[,]+∞)) |
| 45 | 28, 30, 44 | sge0ge0mpt 40655 |
. . . 4
⊢ (𝜑 → 0 ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗))))) |
| 46 | 45 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝑋 = ∅) → 0 ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗))))) |
| 47 | 27, 46 | eqbrtrd 4675 |
. 2
⊢ ((𝜑 ∧ 𝑋 = ∅) → ((voln*‘𝑋)‘𝐴) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗))))) |
| 48 | | simpl 473 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝜑) |
| 49 | | neqne 2802 |
. . . 4
⊢ (¬
𝑋 = ∅ → 𝑋 ≠ ∅) |
| 50 | 49 | adantl 482 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → 𝑋 ≠ ∅) |
| 51 | 33 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → 𝑋 ∈ Fin) |
| 52 | | simpr 477 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → 𝑋 ≠ ∅) |
| 53 | 38 | ffvelrnda 6359 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → ((𝐶‘𝑗)‘𝑘) ∈ ℝ) |
| 54 | 42 | ffvelrnda 6359 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → ((𝐷‘𝑗)‘𝑘) ∈ ℝ) |
| 55 | 54 | rexrd 10089 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → ((𝐷‘𝑗)‘𝑘) ∈
ℝ*) |
| 56 | | icossre 12254 |
. . . . . . . . . . . . 13
⊢ ((((𝐶‘𝑗)‘𝑘) ∈ ℝ ∧ ((𝐷‘𝑗)‘𝑘) ∈ ℝ*) → (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) ⊆ ℝ) |
| 57 | 53, 55, 56 | syl2anc 693 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) ⊆ ℝ) |
| 58 | 57 | ralrimiva 2966 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ∀𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) ⊆ ℝ) |
| 59 | | ss2ixp 7921 |
. . . . . . . . . . 11
⊢
(∀𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) ⊆ ℝ → X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) ⊆ X𝑘 ∈ 𝑋 ℝ) |
| 60 | 58, 59 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) ⊆ X𝑘 ∈ 𝑋 ℝ) |
| 61 | 20 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → ℝ ∈
V) |
| 62 | | ixpconstg 7917 |
. . . . . . . . . . . 12
⊢ ((𝑋 ∈ Fin ∧ ℝ ∈
V) → X𝑘 ∈ 𝑋 ℝ = (ℝ
↑𝑚 𝑋)) |
| 63 | 33, 61, 62 | syl2anc 693 |
. . . . . . . . . . 11
⊢ (𝜑 → X𝑘 ∈
𝑋 ℝ = (ℝ
↑𝑚 𝑋)) |
| 64 | 63 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → X𝑘 ∈
𝑋 ℝ = (ℝ
↑𝑚 𝑋)) |
| 65 | 60, 64 | sseqtrd 3641 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) ⊆ (ℝ
↑𝑚 𝑋)) |
| 66 | 65 | ralrimiva 2966 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) ⊆ (ℝ
↑𝑚 𝑋)) |
| 67 | | iunss 4561 |
. . . . . . . 8
⊢ (∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) ⊆ (ℝ
↑𝑚 𝑋) ↔ ∀𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) ⊆ (ℝ
↑𝑚 𝑋)) |
| 68 | 66, 67 | sylibr 224 |
. . . . . . 7
⊢ (𝜑 → ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) ⊆ (ℝ
↑𝑚 𝑋)) |
| 69 | 4, 68 | sstrd 3613 |
. . . . . 6
⊢ (𝜑 → 𝐴 ⊆ (ℝ ↑𝑚
𝑋)) |
| 70 | 69 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → 𝐴 ⊆ (ℝ ↑𝑚
𝑋)) |
| 71 | | eqid 2622 |
. . . . 5
⊢ {𝑧 ∈ ℝ*
∣ ∃𝑖 ∈
(((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} = {𝑧 ∈ ℝ* ∣
∃𝑖 ∈ (((ℝ
× ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} |
| 72 | 51, 52, 70, 71 | ovnn0val 40765 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → ((voln*‘𝑋)‘𝐴) = inf({𝑧 ∈ ℝ* ∣
∃𝑖 ∈ (((ℝ
× ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))}, ℝ*, <
)) |
| 73 | | ssrab2 3687 |
. . . . . 6
⊢ {𝑧 ∈ ℝ*
∣ ∃𝑖 ∈
(((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} ⊆
ℝ* |
| 74 | 73 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → {𝑧 ∈ ℝ* ∣
∃𝑖 ∈ (((ℝ
× ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} ⊆
ℝ*) |
| 75 | 28, 30, 44 | sge0xrclmpt 40645 |
. . . . . . . 8
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)))) ∈
ℝ*) |
| 76 | 75 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 ≠ ∅) →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)))) ∈
ℝ*) |
| 77 | | opelxpi 5148 |
. . . . . . . . . . . . . 14
⊢ ((((𝐶‘𝑗)‘𝑘) ∈ ℝ ∧ ((𝐷‘𝑗)‘𝑘) ∈ ℝ) → 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉 ∈ (ℝ ×
ℝ)) |
| 78 | 53, 54, 77 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉 ∈ (ℝ ×
ℝ)) |
| 79 | | eqid 2622 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉) = (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉) |
| 80 | 78, 79 | fmptd 6385 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉):𝑋⟶(ℝ ×
ℝ)) |
| 81 | 20, 20 | xpex 6962 |
. . . . . . . . . . . . . 14
⊢ (ℝ
× ℝ) ∈ V |
| 82 | 81 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (ℝ ×
ℝ) ∈ V) |
| 83 | | elmapg 7870 |
. . . . . . . . . . . . 13
⊢
(((ℝ × ℝ) ∈ V ∧ 𝑋 ∈ Fin) → ((𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉) ∈ ((ℝ × ℝ)
↑𝑚 𝑋) ↔ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉):𝑋⟶(ℝ ×
ℝ))) |
| 84 | 82, 34, 83 | syl2anc 693 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉) ∈ ((ℝ × ℝ)
↑𝑚 𝑋) ↔ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉):𝑋⟶(ℝ ×
ℝ))) |
| 85 | 80, 84 | mpbird 247 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉) ∈ ((ℝ × ℝ)
↑𝑚 𝑋)) |
| 86 | | eqid 2622 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)) = (𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)) |
| 87 | 85, 86 | fmptd 6385 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)):ℕ⟶((ℝ ×
ℝ) ↑𝑚 𝑋)) |
| 88 | | ovexd 6680 |
. . . . . . . . . . 11
⊢ (𝜑 → ((ℝ × ℝ)
↑𝑚 𝑋) ∈ V) |
| 89 | | elmapg 7870 |
. . . . . . . . . . 11
⊢
((((ℝ × ℝ) ↑𝑚 𝑋) ∈ V ∧ ℕ ∈
V) → ((𝑗 ∈
ℕ ↦ (𝑘 ∈
𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)) ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ) ↔
(𝑗 ∈ ℕ ↦
(𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)):ℕ⟶((ℝ ×
ℝ) ↑𝑚 𝑋))) |
| 90 | 88, 30, 89 | syl2anc 693 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)) ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ) ↔
(𝑗 ∈ ℕ ↦
(𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)):ℕ⟶((ℝ ×
ℝ) ↑𝑚 𝑋))) |
| 91 | 87, 90 | mpbird 247 |
. . . . . . . . 9
⊢ (𝜑 → (𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)) ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚
ℕ)) |
| 92 | 91 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → (𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)) ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚
ℕ)) |
| 93 | | simpr 477 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ) |
| 94 | | mptexg 6484 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑋 ∈ Fin → (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉) ∈ V) |
| 95 | 33, 94 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉) ∈ V) |
| 96 | 95 | adantr 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉) ∈ V) |
| 97 | 86 | fvmpt2 6291 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑗 ∈ ℕ ∧ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉) ∈ V) → ((𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))‘𝑗) = (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)) |
| 98 | 93, 96, 97 | syl2anc 693 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ((𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))‘𝑗) = (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)) |
| 99 | 98 | coeq2d 5284 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))‘𝑗)) = ([,) ∘ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))) |
| 100 | 99 | fveq1d 6193 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))‘𝑗))‘𝑘) = (([,) ∘ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))‘𝑘)) |
| 101 | 100 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))‘𝑗))‘𝑘) = (([,) ∘ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))‘𝑘)) |
| 102 | 80 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉):𝑋⟶(ℝ ×
ℝ)) |
| 103 | | simpr 477 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → 𝑘 ∈ 𝑋) |
| 104 | 102, 103 | fvovco 39381 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (([,) ∘ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))‘𝑘) = ((1st ‘((𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)‘𝑘))[,)(2nd ‘((𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)‘𝑘)))) |
| 105 | | simpr 477 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 𝑘 ∈ 𝑋) |
| 106 | | opex 4932 |
. . . . . . . . . . . . . . . . . . . 20
⊢
〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉 ∈ V |
| 107 | 106 | a1i 11 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉 ∈ V) |
| 108 | 79 | fvmpt2 6291 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑘 ∈ 𝑋 ∧ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉 ∈ V) → ((𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)‘𝑘) = 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉) |
| 109 | 105, 107,
108 | syl2anc 693 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → ((𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)‘𝑘) = 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉) |
| 110 | 109 | fveq2d 6195 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (1st ‘((𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)‘𝑘)) = (1st ‘〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)) |
| 111 | | fvex 6201 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐶‘𝑗)‘𝑘) ∈ V |
| 112 | | fvex 6201 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐷‘𝑗)‘𝑘) ∈ V |
| 113 | | op1stg 7180 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐶‘𝑗)‘𝑘) ∈ V ∧ ((𝐷‘𝑗)‘𝑘) ∈ V) → (1st
‘〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉) = ((𝐶‘𝑗)‘𝑘)) |
| 114 | 111, 112,
113 | mp2an 708 |
. . . . . . . . . . . . . . . . . 18
⊢
(1st ‘〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉) = ((𝐶‘𝑗)‘𝑘) |
| 115 | 114 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (1st
‘〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉) = ((𝐶‘𝑗)‘𝑘)) |
| 116 | 110, 115 | eqtrd 2656 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (1st ‘((𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)‘𝑘)) = ((𝐶‘𝑗)‘𝑘)) |
| 117 | 109 | fveq2d 6195 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (2nd ‘((𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)‘𝑘)) = (2nd ‘〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)) |
| 118 | 111, 112 | op2nd 7177 |
. . . . . . . . . . . . . . . . . 18
⊢
(2nd ‘〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉) = ((𝐷‘𝑗)‘𝑘) |
| 119 | 118 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (2nd
‘〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉) = ((𝐷‘𝑗)‘𝑘)) |
| 120 | 117, 119 | eqtrd 2656 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → (2nd ‘((𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)‘𝑘)) = ((𝐷‘𝑗)‘𝑘)) |
| 121 | 116, 120 | oveq12d 6668 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑋) → ((1st ‘((𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)‘𝑘))[,)(2nd ‘((𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)‘𝑘))) = (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
| 122 | 121 | adantlr 751 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → ((1st ‘((𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)‘𝑘))[,)(2nd ‘((𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)‘𝑘))) = (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
| 123 | 101, 104,
122 | 3eqtrrd 2661 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) = (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))‘𝑗))‘𝑘)) |
| 124 | 123 | ixpeq2dva 7923 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → X𝑘 ∈
𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) = X𝑘 ∈ 𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))‘𝑗))‘𝑘)) |
| 125 | 124 | iuneq2dv 4542 |
. . . . . . . . . . 11
⊢ (𝜑 → ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)) = ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))‘𝑗))‘𝑘)) |
| 126 | 4, 125 | sseqtrd 3641 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))‘𝑗))‘𝑘)) |
| 127 | 126 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → 𝐴 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))‘𝑗))‘𝑘)) |
| 128 | | eqidd 2623 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 ≠ ∅) →
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)))))) |
| 129 | 51 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑋 ≠ ∅) ∧ 𝑗 ∈ ℕ) → 𝑋 ∈ Fin) |
| 130 | 52 | adantr 481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑋 ≠ ∅) ∧ 𝑗 ∈ ℕ) → 𝑋 ≠ ∅) |
| 131 | 38 | adantlr 751 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑋 ≠ ∅) ∧ 𝑗 ∈ ℕ) → (𝐶‘𝑗):𝑋⟶ℝ) |
| 132 | 42 | adantlr 751 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑋 ≠ ∅) ∧ 𝑗 ∈ ℕ) → (𝐷‘𝑗):𝑋⟶ℝ) |
| 133 | 32, 129, 130, 131, 132 | hoidmvn0val 40798 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑋 ≠ ∅) ∧ 𝑗 ∈ ℕ) → ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)) = ∏𝑘 ∈ 𝑋 (vol‘(((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)))) |
| 134 | 133 | mpteq2dva 4744 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → (𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗))) = (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))))) |
| 135 | 134 | fveq2d 6195 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 ≠ ∅) →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)))))) |
| 136 | 123 | eqcomd 2628 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))‘𝑗))‘𝑘) = (((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))) |
| 137 | 136 | fveq2d 6195 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ ℕ) ∧ 𝑘 ∈ 𝑋) → (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))‘𝑗))‘𝑘)) = (vol‘(((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)))) |
| 138 | 137 | prodeq2dv 14653 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ ℕ) → ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))‘𝑗))‘𝑘)) = ∏𝑘 ∈ 𝑋 (vol‘(((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)))) |
| 139 | 138 | mpteq2dva 4744 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))‘𝑗))‘𝑘))) = (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘))))) |
| 140 | 139 | fveq2d 6195 |
. . . . . . . . . . 11
⊢ (𝜑 →
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))‘𝑗))‘𝑘)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)))))) |
| 141 | 140 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑋 ≠ ∅) →
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))‘𝑗))‘𝑘)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(((𝐶‘𝑗)‘𝑘)[,)((𝐷‘𝑗)‘𝑘)))))) |
| 142 | 128, 135,
141 | 3eqtr4d 2666 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑋 ≠ ∅) →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))‘𝑗))‘𝑘))))) |
| 143 | 127, 142 | jca 554 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → (𝐴 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))‘𝑗))‘𝑘) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))‘𝑗))‘𝑘)))))) |
| 144 | | nfcv 2764 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑗𝑖 |
| 145 | | nfmpt1 4747 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑗(𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)) |
| 146 | 144, 145 | nfeq 2776 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑗 𝑖 = (𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)) |
| 147 | | nfcv 2764 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘𝑖 |
| 148 | | nfcv 2764 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑘ℕ |
| 149 | | nfmpt1 4747 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑘(𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉) |
| 150 | 148, 149 | nfmpt 4746 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘(𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)) |
| 151 | 147, 150 | nfeq 2776 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑘 𝑖 = (𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)) |
| 152 | | fveq1 6190 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)) → (𝑖‘𝑗) = ((𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))‘𝑗)) |
| 153 | 152 | coeq2d 5284 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)) → ([,) ∘ (𝑖‘𝑗)) = ([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))‘𝑗))) |
| 154 | 153 | fveq1d 6193 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)) → (([,) ∘ (𝑖‘𝑗))‘𝑘) = (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))‘𝑗))‘𝑘)) |
| 155 | 154 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝑖 = (𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)) ∧ 𝑘 ∈ 𝑋) → (([,) ∘ (𝑖‘𝑗))‘𝑘) = (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))‘𝑗))‘𝑘)) |
| 156 | 151, 155 | ixpeq2d 39237 |
. . . . . . . . . . . . 13
⊢ (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)) → X𝑘 ∈
𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) = X𝑘 ∈ 𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))‘𝑗))‘𝑘)) |
| 157 | 156 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝑖 = (𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)) ∧ 𝑗 ∈ ℕ) → X𝑘 ∈
𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) = X𝑘 ∈ 𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))‘𝑗))‘𝑘)) |
| 158 | 146, 157 | iuneq2df 39212 |
. . . . . . . . . . 11
⊢ (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)) → ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) = ∪ 𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))‘𝑗))‘𝑘)) |
| 159 | 158 | sseq2d 3633 |
. . . . . . . . . 10
⊢ (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)) → (𝐴 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ↔ 𝐴 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))‘𝑗))‘𝑘))) |
| 160 | | nfv 1843 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑘 𝑗 ∈ ℕ |
| 161 | 151, 160 | nfan 1828 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘(𝑖 = (𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)) ∧ 𝑗 ∈ ℕ) |
| 162 | 154 | fveq2d 6195 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)) → (vol‘(([,) ∘
(𝑖‘𝑗))‘𝑘)) = (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))‘𝑗))‘𝑘))) |
| 163 | 162 | a1d 25 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)) → (𝑘 ∈ 𝑋 → (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)) = (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))‘𝑗))‘𝑘)))) |
| 164 | 163 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝑖 = (𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)) ∧ 𝑗 ∈ ℕ) → (𝑘 ∈ 𝑋 → (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)) = (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))‘𝑗))‘𝑘)))) |
| 165 | 161, 164 | ralrimi 2957 |
. . . . . . . . . . . . . 14
⊢ ((𝑖 = (𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)) ∧ 𝑗 ∈ ℕ) → ∀𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)) = (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))‘𝑗))‘𝑘))) |
| 166 | 165 | prodeq2d 14652 |
. . . . . . . . . . . . 13
⊢ ((𝑖 = (𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)) ∧ 𝑗 ∈ ℕ) → ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)) = ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))‘𝑗))‘𝑘))) |
| 167 | 146, 166 | mpteq2da 4743 |
. . . . . . . . . . . 12
⊢ (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)) → (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))) = (𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))‘𝑗))‘𝑘)))) |
| 168 | 167 | fveq2d 6195 |
. . . . . . . . . . 11
⊢ (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)) →
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))‘𝑗))‘𝑘))))) |
| 169 | 168 | eqeq2d 2632 |
. . . . . . . . . 10
⊢ (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)) →
((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))) ↔
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))‘𝑗))‘𝑘)))))) |
| 170 | 159, 169 | anbi12d 747 |
. . . . . . . . 9
⊢ (𝑖 = (𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)) → ((𝐴 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))) ↔ (𝐴 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))‘𝑗))‘𝑘) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))‘𝑗))‘𝑘))))))) |
| 171 | 170 | rspcev 3309 |
. . . . . . . 8
⊢ (((𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉)) ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ) ∧
(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))‘𝑗))‘𝑘) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ ((𝑗 ∈ ℕ ↦ (𝑘 ∈ 𝑋 ↦ 〈((𝐶‘𝑗)‘𝑘), ((𝐷‘𝑗)‘𝑘)〉))‘𝑗))‘𝑘)))))) → ∃𝑖 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))) |
| 172 | 92, 143, 171 | syl2anc 693 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → ∃𝑖 ∈ (((ℝ ×
ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))) |
| 173 | 76, 172 | jca 554 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑋 ≠ ∅) →
((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)))) ∈ ℝ* ∧
∃𝑖 ∈ (((ℝ
× ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))))) |
| 174 | | eqeq1 2626 |
. . . . . . . . 9
⊢ (𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)))) → (𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))) ↔
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))) |
| 175 | 174 | anbi2d 740 |
. . . . . . . 8
⊢ (𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)))) → ((𝐴 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))) ↔ (𝐴 ⊆ ∪
𝑗 ∈ ℕ X𝑘 ∈
𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))))) |
| 176 | 175 | rexbidv 3052 |
. . . . . . 7
⊢ (𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)))) → (∃𝑖 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))) ↔ ∃𝑖 ∈ (((ℝ × ℝ)
↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))))) |
| 177 | 176 | elrab 3363 |
. . . . . 6
⊢
((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)))) ∈ {𝑧 ∈ ℝ* ∣
∃𝑖 ∈ (((ℝ
× ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} ↔
((Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)))) ∈ ℝ* ∧
∃𝑖 ∈ (((ℝ
× ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)))) =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘))))))) |
| 178 | 173, 177 | sylibr 224 |
. . . . 5
⊢ ((𝜑 ∧ 𝑋 ≠ ∅) →
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)))) ∈ {𝑧 ∈ ℝ* ∣
∃𝑖 ∈ (((ℝ
× ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))}) |
| 179 | | infxrlb 12164 |
. . . . 5
⊢ (({𝑧 ∈ ℝ*
∣ ∃𝑖 ∈
(((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))} ⊆ ℝ* ∧
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗)))) ∈ {𝑧 ∈ ℝ* ∣
∃𝑖 ∈ (((ℝ
× ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))}) → inf({𝑧 ∈ ℝ* ∣
∃𝑖 ∈ (((ℝ
× ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))}, ℝ*, < ) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗))))) |
| 180 | 74, 178, 179 | syl2anc 693 |
. . . 4
⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → inf({𝑧 ∈ ℝ*
∣ ∃𝑖 ∈
(((ℝ × ℝ) ↑𝑚 𝑋) ↑𝑚 ℕ)(𝐴 ⊆ ∪ 𝑗 ∈ ℕ X𝑘 ∈ 𝑋 (([,) ∘ (𝑖‘𝑗))‘𝑘) ∧ 𝑧 =
(Σ^‘(𝑗 ∈ ℕ ↦ ∏𝑘 ∈ 𝑋 (vol‘(([,) ∘ (𝑖‘𝑗))‘𝑘)))))}, ℝ*, < ) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗))))) |
| 181 | 72, 180 | eqbrtrd 4675 |
. . 3
⊢ ((𝜑 ∧ 𝑋 ≠ ∅) → ((voln*‘𝑋)‘𝐴) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗))))) |
| 182 | 48, 50, 181 | syl2anc 693 |
. 2
⊢ ((𝜑 ∧ ¬ 𝑋 = ∅) → ((voln*‘𝑋)‘𝐴) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗))))) |
| 183 | 47, 182 | pm2.61dan 832 |
1
⊢ (𝜑 → ((voln*‘𝑋)‘𝐴) ≤
(Σ^‘(𝑗 ∈ ℕ ↦ ((𝐶‘𝑗)(𝐿‘𝑋)(𝐷‘𝑗))))) |